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1. The problem of gravitational radiation has several aspects. In this
paper those which are related to the free motion of gravitating bodies
are considered.

In Newtonian mechanies the initial positions and velocities of point-
masses determine their motion completely. The situation is different in
electrodynamics where the initial values of the field are required besides
information concerning changes. Two free point-charges of opposite signs
may move uniformly around a circle in a standing-wave electromagnetic
field. However, the same charges may alternatively produce outgoing
radiation. Their motion will not then be periodic; they will undergo
damping. Which of these cases occurs in any particular system depends
on the initial and boundary conditions.

The question arises as to whether the situation in General Rela-
tivity resembles that in Newtonian mechanics rather than that in electro-
dynamics. As yet, the most powerful tool for dealing with the problem
of motion is the Einstein-Infeld-Hoffmann “new’” approximation me-
thod [1]. This provides a description of a set of motions which are com-
patible with the field equations and which, in the first significant order,
correspond to the Newtonian motions. The original EIH method is based

on certain assumptions corresponding to the choice of symmetric po-

tentials in electrodynamics. Uniform circular motion of two bodies of
equal mass is possible within the original framework of the new appro-
ximation method, but ‘‘damped” motion along a spiral path is not. The
problem of whether the EIH method discloses all possible motions of
bodies interacting through the gravitational field has been the object
of several papers. Infeld [2] supplemented the original ETH expansions
by certain “radiation terms’” and showed that they do not contribute
to the equations of motion of the 7th order (the Newtonian equations
being of the 4th). Hu [3] performed the next step of the approximation
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procedure and found the radiative corrections to the equations of motion
in the 9th order. The result of his lengthy calculations was paradoxical:
it turned out that the total energy of a radiating double-star system
would increase. Infeld and Scheidegger [4] investigated the possibility
of eliminating the radiation terms by means of co-ordinate transforma-
tiong. Later, Goldberg [5] found radiative solutions which cannot be
annihilated in this way. ‘

The aim of the present paper is to show that there are free gravi-
tational motions which differ from those described by the original for-
mulation of the ETH method. As an illustration, the calculations referring
to the problem of two bodies of equal mass are performed by a method
slightly different from that of Hu. On the assumption that the Newtonian
motion is eircular, the equations of motion up to the 9th order turn out
to be of the type @ + 204+ w*(@)x = 0, where a = const > 0.

2. The EIH method is based on a special approximation procedure
and provides a way of obtaining the equations of motion. The fact that
the equations of motion follow from the field equations is ‘due to the
general covariance of Einstein’s theory, but the new approximation
method can also be applied in other field theories.

Let ¢ = @(a?, ¢) denote a function of co-ordinates 2* (»=0,1, 2, 3)
depending on a parameter ¢. In the new approximation method a new
time variable ¢ = 29/¢ is introduced and it is assumed that ¢ can be ex-
panded in a power series in 1/e.

(1) ¢ = glet, ak, o) = > o—mp(t, o¥), (k=1,2,3).
m=0 m

It follows that 9¢/dz° = ¢—19¢/dt = ¢~'¢ is of order m + 1. We choose
m m m

¢ =1, bearing in mind subsequently that differentiation with respect
to time increases the order of a term by one.
If  satisfies the wave equation [J¢ = 0, then the fields ¢ are subject
m

to the relations
(2) dg =0, Adg =0, Ap =@, ..., Adp= @, ...
m m—=2

The retarded spherical wave

(3) p=a(t—r)fr= 0 (=1ym(ml)-trt-mdma(t)/dim

m=0
is a solution of (2). By omitting the odd terms in (3) one obtains the
half-advanced, half-retarded wave }[a(t—7r)-+a(t+7)]. In order to make
easier the comparison with the original works on the EIH method a(f) is
assumed to be of second order. The odd terms in (3) are called “radiation
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terms”, the first of which, qJ = —d(t), is a function of time alone. It is
important to note that qo = O(rm 8) for large r, this being a general pro-

perty of solutions of the inhomogeneous wave equation with a spatially
bounded source. If the field ¢ is periodic and if 1 denotes the corresponding
wave-length, then the ratio of two consecutive terms in (1) is of order r/4
(where r is the distance from the source). The first few terms of the se-
ries (1) will closely approximate the field ¢ only in the region » < 4; the
BEIH method is not well-suited to the investigation of the field in the
wave zone.

In electrodynamics the situation is quite similar, and we shall only
stress certain peculiarities due to gauge-invariance. If A* is a potential
satisfying the Lorentz condition 4%, = 0, then Maxwell’s equations read

(4) O4° = —4nj®, =0,

It is convenient to assume that j° and j* are of the second and third
orders, respectively. For regular and spatially bounded j* we may solve
(4) using, e. g., the retarded Green function. On expanding the solution
into an EIH power series we find that the first radiation term

Ao=— [ jooaV :
vanishes because of the conservation of charge: j°,+j%z = 0. Thus
the first non-vanishing radiation term is of the 4th order, A*. For large ,
4
and for m >3 we have A*= 0(rm*).

m
An analogous discussion is possible in the linearized theory of gravi-
tation. If we write g, = %, +h. (With h, small), v, = h,—31,7%h,
and assume y#, = 0, then Hinstein’s equations become

(5) Ela® == 161", I, =0,

where terms non-linear in h, have been neglected. The functions 7'°,
Tok and 7% can be assumed to be of second, third and fourth orders,
respectively. The :Voo and yok vanish because of the conservation laws [2],

hence yuo, 'ym are bhe flrst non-vanishing radiation terms.

Ta,kmg into account the conservation laws one may easily show that,
for large » and for m > 4, y,, behaves like rm—5,
m

8. The structure of Hinstein’s equations is such that we can, if we
wish, choose solutions of the form

Joo= 1+goo+goo+gou+‘-v-
(6) Jox = Gox + Jok + Jor 1 ---
3 5 7
i = —5ik+gm+{i’ik + Gix + -.e -
8
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By analogy with the scalar wave equation and Maxwell’s theory,
solutions of the form (6) may be interpreted as representing standing-
wave fields. In order to get solutions corresponding to ‘retarded” or
“gdvanced” fields the series (6) must be supplemented with the missing
radiation terms, i. e. those odd in g,, and gy and even in gy.

A solution for g, (n>4) contains, in general, both terms linear

n

and non-linear in the masses. The linear part of g, is easily calculated

from the linearized theory by solving (5). We n?llay expect ¢, also to
n

behave like 7—% (n > 4), unless some of the non-linear terms in g,, cancel

with the r»—% terms in the linear part. In general, one cannot impose
on the expanded metric the condition lim g, = 0. However, this does

not necessarily mean that the metric is Fﬂf)cn?fﬂat at infinity.

The first radiation terms satisfy linear homogeneous equations and
we may expect them to be linear in the masses so that their form can
be derived from the linearized theory. If we take T in the form pro-
posed by Infeld [6] for spherically symmetric non-rotating bodies

—

(7) Y —gIT* = Z mE" £ (2° — &(t)) dtjds, m= m = const. ,

choose a retarded solution of (5), and expand it into an EIH series, then
the first non-vanishing radiation terms become

4 a? do
B o=z D gt ye—t D) GmE,

e - d? :
o= _42 m&k — 3 Z 3?3(’”“'25&) ;

where summation is to be taken over all particles. Here, the funections
&k(t) are the co-ordinates of a typical particle, £° = ¢, and r is the Huclidean
distance from the particle. The first sum in yg is of at least the 6th order

]
because of the Newtonian equations of motion [2]. The ¢g9, g and gox
5 5 6

corresponding to (8) can be obtained from the formula
Gy = Vv — %npv"?wyea .
k3 n n
If a co-ordinate transformation
2= g'°+a'(z’), o*F=a%4a(x”),
is performed then the first terms affected are

r
Joo = Goo+ 280, Yok = GJort Box+ o)
n+2 n+2 n+1 n+1l n+l n+l bt (3

G = Qi+ Gig+ Oniy  Ga= Napdh.
n n n n
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It can easily be seen that, if (gu, gok, gm,) is a solution of the field

equations, then (gix, gox, goo) 18 also a solutlon representing the same
n+l nt2
physical s1tua,t10nn in a different co-ordinate system. Because of the

Newtonian equations, the functions gzk depend on the time only, and

thus one can choose ak such that gek = 0. However, the whole set of

functions (g, gok, g.m) can be anmhﬂa,ted by a co-ordinate transforma-
il n+1 n+
tion only if

(9a) g_%o,ua —!—gzk 00 — 9'10 ko — gko o =20,
(Qb) Jom, ik +gtk om — Joiem — Gkm,0i — 0,
ntl ntl n
(9c) Jimga + Giim— Gagem — Jrma = 0.
n n n n

That is to say, Eqs. (9) constitute a system of necessary and suffi-
cient conditions for the existence of functions a,o and a;c such that
g;k = gir= gé = 0. Goldberg [5] remarked that by startmg Wlth g,,k = ful?)

n+1 n+2

one can obtain solutions of the field equations of the (n - 1)th and (n+2)th
orders such that conditions (9) will not be satisfied. However, it must
be noted that, since the solutions of the field equations are not unique,

one can also start with the same gm and obtain functions gq and g00
n+1 n+

which can be annihilated. For example, the field
g = fult)y g = 37%aks  Goo=10
n n+1 n+2
is flat, i. e. it fulfills conditions (9), but the field
g = fuelt), Jor = 0, Goo = *'rzf‘.;sfﬁ
n n+1 n+2
is empty and non-flat unless fgz— 4dafes (spherical symmetry), that is

Goo,ix + gm 00 — Q’w k0 — g'ko i0 — fuc — 5iicfss .
n+2 n+

The radiation terms (g@k =0, guk = 0, gm,) represent an apparent field,

L e. they can be ehmlna,ted by a co ordmate transformation and do not

contribute to the equations of motion up to the 7th order [2]. This

suggests that (g, gor, Joo), should be the first true radiative set con-
5 6 7 )

tributing to the equations of motion of the 9th order. In the case of
a system of pole-particles, gﬁc and g(]k can be determined from (8), and

gm, from the corresponding fleld equatlon

(10) 1500 = _‘*Agou‘i‘ %Q’oo.oo* 2.‘]@.’\:9’00,1.& = —8n Tuo %gon
v
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where glm is given by the usual ETH expression goo— — 2m/v~ The
functlons T. and T can be evaluated from (7). One must note tha,t mdt/ds
7 7
contains a 7th order term m — — }mg,,. Finally, as the solution of (10),
7 )

we obtain the expression
(11)
2 s i 2 Z a3 vis =y .
0 =i Z g\ 37 2, gp(mrtes) + g Z mr g+ ({?00—5— 259'83)29'.,0 3
The set of fields (gix, Jox, Joo) defined by (8) and (11) cannot, in general,
5 .6 7

be eliminated by a co-ordinate transformation. This may be confirmed
by calculating the expression (9a) for n = 5.

4. For spherically symmetric non-rotating particles the equations
of motion can be obtained from the ‘“geodesic”’ equation [7], [8] '

| ag dg
(12) (d32 +\;w[ ds ds) o8

where d3* = §,déads?, and where ¢ denotes the regular part of ¢ with
a* replaced by & (see [8] for details). By eliminating ds from (12) one
obtains the equations of motion in the form

(13) o —m(su({m,} {O‘ék)s*‘?)

In this notation the Newtonian equations are

ffk Em(Ek—I-{zj;}) =0,

The equations of motion can be written to the 9th order —
(14) Q- QF L Qk L Ok =0,
4 6 8 9

Einstein, Infeld and Hoffman [1] have found the first post-Newtonian

contribution Q¢ The radiative correction has the form
6

A R

and can be explicitly evaluated by means of (8) and (11). The explicit

form of £ is not known, but it is possible to foresee it in special simple
8

Ccases.
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Let us consider the case of fwo bodies of equal mass m, with co-
ordinates & and %, respectively. The equations of motion up to the
6th order admit a solution which represents the circular motion of these
bodies. One may take & = —»* and

(16) gl = Rcoswyt, & = Rsinwgt, &=0.

The angular velocity w, is a function of R and m which, in the Newto-
nian approximation, is

(17) _ wp = m/4R? .

From symmetry considerations it follows that the equations of mo-
tion to the 9th order have also a solution with & — —xk. The 8th order
terms are either of the form A&k or BE&*; but B = 0 by virtue of (16).

8 7 7
Thus, the equations to the 8th order also admit periodic golutions re-
presenting circular motion. It follows that the equations of motion up
to the 9th order have the form

(18) - m(Et 208+ 02k) = 0,
where a is a constant of the 6th order, and |
(19) w? = m/4|EP + constants of order 4 and 6.
The damping term 2amék arises from %, The value of a is deter-

9
mined by the use of Eq. (15) with g, gox, goo given by (8) and (11). Thus,
5 6 7 ;

(20) o = 3m3/20R:.

Eq. (18) does not admit exact solutions of the form (16). In spite
of the non-linearity of HEq. (18) one might expect it to admit solutions
of a ‘“damped” character (« > 0), at least for a limited time range.

I am grateful to Professor L. Infeld and Dr. J. Plebanski for many
interesting discussions during this investigation. The work was con-
cluded at King’s College, London, and I am indebted to Professor H. Bondi
and Dr. F. A. E. Pirani for their hospitality there.
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