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Spinors in geometry and physics ∗

Andrzej Trautmana†

aInstytut Fizyki Teoretycznej, Uniwersytet Warszawski
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I have known Paolo Budinich for over 30 years; in the 1980s, thanks to the hospitality
extended to me by SISSA in Trieste, I had the opportunity to collaborate with him on
spinors. I was much impressed by his love and knowledge of the subject. For me, he
demonstrated a good taste in science by his fascination with the work of Élie Cartan. It
was Paolo who drew my attention to Cartan’s simple—nowadays called pure—spinors.
We wrote together a few papers [5–7] and The Spinorial Chessboard [E], a booklet on
Clifford algebras and their representations. I very much admire Paolo Budinich for what
he did to make Trieste into a scientific centre of international reputation. We also became
personal friends, spending together much time on the Carso and in places such as Cortina
d’Ampezzo and Zielonowo, a tiny village in Poland.

With great pleasure I dedicate this review to Paolo Budinich, my friend of many years,
always so young in spirit.

1. INTRODUCTION

Spinors permeate all of modern physics and have an important place in mathematics.
Several books and reviews have been written on the subject; some of them are listed at
the end of the article. I present here only a brief, personal view of this field; perhaps it
may be of some use as a guide to literature for students and young researchers. Spinors
involve subtle mathematics; I try here to be as little technical as possible.

Only some aspects of spinors are outlined here. Spinors in physics are a very vast
and rather well-known subject; for this reason, in Section 3 only a few key words are
given. Much space is devoted to the algebra of spinors and null elements, reflecting Paolo
Budinich’s interest in pure spinors: this notion is reviewed in Section 5. In Section 7, I
review some applications of spinor notions in general relativity theory: this corresponds
to my own interests. While writing this article, I freely used material from my earlier
publications listed in the bibliography. Many important aspects of spinors are left aside.
In particular, spinor fields are treated in the physicists’, local manner, instead of being
defined in terms of spin structures [A,I,J]. Moreover, topological aspects and results, such
as the Atiyah–Singer index theorem for the Dirac operator D and vanishing theorems for
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D [J] are completely left out. Similar remarks apply to estimates of the eigenvalues of
D and the Seiberg–Witten invariants [I], [15]. Nothing is said here about twistors [K],
Killing spinors [B], triality and octonions [F,G], [1,12,30]. Another major topic that is
neglected here is that of spinors in supersymmetric and string theories [L]. The books [I]
and [J] contain many references to recent literature.

The notation used in this article is standard in differential geometry and mathematical
physics. The exterior algebra associated with a vector space W is ∧W ; the symbols
⊗, ∧ and y denote the tensor, exterior and interior products, respectively. I write also
e(v)w = v ∧ w and i(v)w = vyw for v ∈ W and w ∈ ∧W . The map (w,w′) 7→ 〈w,w′〉 is
the evaluation map of the 1-form w′ on the vector w. If f ∈ EndW , then f ∗ ∈ EndW ∗

is defined by 〈w, f ∗(w′)〉 = 〈f(w), w′〉 for every w ∈ W and w′ ∈ W ∗. I use the Einstein
summation convention over repeated indices. If N ⊂ V , then N⊥ is the set of all elements
of V orthogonal to every element of N .

2. HISTORICAL REMARKS

There is a prehistory of spinors: they appear, in disguise, in Euclid’s solution

x = p2 − q2, y = p2 + q2, z = 2pq, p, q ∈ N, (1)

of the Pythagorean equation x2 + z2 = y2. The solution (1) is equivalent to(
y + x z
z y − x

)
= 2

(
p
q

)(
p, q

)
,

an equation that represents the ‘null vector’ (x, y, z) as the square of the ‘spinor’ (p, q); see
[33] for further remarks. In Euler’s formulae for the rational representation of rotations in
R3 one can find—with a little effort and some good will—the map SU2 → SO3. Hamilton
represented rotations in terms of quaternions: every rotation in R3 is of the form q 7→
aqa−1, where a ∈ Sp1 and q ∈ R3 ⊂ H are a unit and a pure quaternion, respectively
(this shows that the groups Spin3 and Sp1 are isomorphic). Cayley (1855) extended
Hamilton’s observation to R4; he proved, in essence, the isomorphism of the groups Spin4

and Sp1 × Sp1. More information on that early period can be found in [9].
Cartan [8] introduced the fundamental representations of the complex Lie algebras

som, m = 3, 4, . . . , and pointed out that, for m = 2n and m = 2n + 1, there are among
them irreducible representations of dimension 2n that do not lift to representations of the
orthogonal groups; later they were recognized as the spin representations. The name and
fame spinors owe to physicists; it all started with Pauli [19] and Dirac [11]; according
to van der Waerden [37] it was Ehrenfest who introduced the name. In Dirac’s work,
the space of (bi)spinors appears as the carrier of a representation of the Clifford algebra
associated with Minkowski space-time. Brauer and Weyl made explicit the connection
between Cartan’s and Clifford algebra approaches to spinors; they gave a construction, in
any number of dimensions, of the spin representations and showed how the tensor product
of two such representations decomposes into irreducibles.

For the first time, spinor groups — but not the name — appear in the work of Lipschitz
[18]; see remarks on this subject in [13,40].
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Shortly after the appearance of Dirac’s paper, Wigner, Weyl and Fock developed a
(local) formulation of spinor fields, and of their covariant differentiation on Riemannian
manifolds. It consisted in referring spinors to tetrads (‘Vierbeine’); its modern formulation
uses the notion of a (s)pin structure involving a ‘prolongation’ of the bundle of orthonormal
frames to the principal (s)pin bundle; see [A,H,I] for this formulation and [32,34] for further
historical remarks on the subject.

Following earlier work by Veblen and Givens [38], Cartan introduced the notion of
simple spinors. Chevalley based his Algebraic theory of spinors [G] on the notion of
minimal ideals of Clifford algebras, an idea considered before by Riesz [27] and, implicitly,
by physicists in the context of the Dirac equation [29]. Chevalley developed the theory of
Clifford algebras over an arbitrary field of numbers, proved rigorously several fundamental
theorems in this subject and introduced the expression pure spinors for Cartan’s simple
spinors. (The adjective ‘simple’ is reserved in algebra to denote objects that cannot be
represented as products.)

3. SPINORS IN PHYSICS

Spinors—the double-connectedness of SO3—have been ‘seen’ by physicists in the obser-
vation of sodium doublets : they indicate the appearance of 2-dimensional vector spaces,
carriers of a representation of SU2. Similar remarks apply to the ‘anomalous’ Zeeman
effect.

One of the great achievements of the 20th century physics is the elucidation of the role
of fermions in the stability of matter. It is based on Pauli’s exclusion principle and the
underlying requirement to use Fermi statistics for particles of half-integer spin. The world
around us, and life in particular, are so rich because Nature found it convenient to use,
among its building blocks, entities requiring spinors in their description.

The Dirac equation led to the prediction of anti-particles ; the appearance of negative
energy states forced quantum field theory to be extended to fermions.

Another major result, of spinorial origin, is the explanation of the value of the gyro-
magnetic ratio of the electron.

Spinors play a fundamental role in supersymmetric and string theories.

There is a wealth of literature on spinors in physics; it suffices here to mention the
books [C,D,K,L].

4. THE ALGEBRA OF SPINORS AND NULL ELEMENTS

In this Section, the basic theorems on Clifford algebras and their representations are
recalled; their proofs can be found in [C,G,J] and [2].

4.1. Clifford algebras
4.1.1. Definitions.
Definition 1. A quadratic space (V, g) is a finite-dimensional vector space V over k = R
or C with an isomorphism g : V → V ∗ which is symmetric, g∗ = g.
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I use the same letter g for the metric tensor g ∈ V ∗ ⊗sym V ∗ associated with that
isomorphism so that g(u, v) = 〈u, g(v)〉. The quadratic form associated with g is denoted
by ggg, i.e. ggg(v) = g(v, v).

Definition 2. The Clifford algebra associated with (V, g) is the quotient algebra

Cl(V, g) = Tensor(V )/I(V, g),

where

Tensor(V ) =
∞
⊕
k=0
⊗kV, ⊗0V = k, ⊗1V = V, etc.,

is the tensor algebra of V and I(V, g) is the ideal generated by all elements of the form
v ⊗ v − ggg(v), v ∈ V .

The Clifford algebra is associative with a unit element denoted by 1. One denotes by
κ the canonical map of Tensor(V ) onto Cl(V, g) and by ab the product of two elements
a, b ∈ Cl(V, g) so that κ(A ⊗ B) = κ(A)κ(B). The map κ is injective on k ⊕ V and one
identifies k⊕ V with its image under κ. With this identification, one has

uv + vu = 2g(u, v) for every u, v ∈ V.

4.1.2. The universal property.
Clifford algebras are characterized by their universal property described in

Theorem 1. If A is an algebra with a unit 1A and f : V → A is a Clifford map, i.e. a
linear map such that f(v)2 = g(v, v)1A for every v ∈ V , then there exists a homomorphism
f̂ : Cl(V, g)→ A of algebras with units such that f = f̂ ◦ κ|V .

Let A = End(∧V ) and, for every v ∈ V and w ∈ ∧V , put f(v)w = v ∧ w + g(v)yw,
then f : V → End(∧V ) is a Clifford map and the map i : Cl(V, g) → ∧V given by
i(a) = f̂(a)1∧V is an isomorphism of vector spaces. This proves

Theorem 2. As a vector space, the algebra Cl(V, g) is isomorphic to the exterior algebra
∧V ; it is Z2-graded by the main automorphism α characterized by α(v) = −v for every
v ∈ V ⊂ Cl(V, g).

Put

Cl±(V, g) = {a ∈ Cl(V, g) | α(a) = ±a}.

so that Cl(V, g) = Cl+(V, g) ⊕ Cl−(V, g) and Cl+(V, g) is the even Clifford (sub)algebra.
It is convenient to describe the grading by putting χ(a) = 0 for a ∈ Cl+(V, g) and
χ(a) = 1 for a ∈ Cl−(V, g). The transposition is an antiautomorphism a 7→ at of Cl(V, h)
characterized by being a linear automorphism of the underlying vector space such that
1t = 1, vt = v for every v ∈ V and (ab)t = btat for every a, b ∈ Cl(V, h).

If V is m-dimensional, then Cl(V, g) is 2m-dimensional. The linear isomorphism

c : Cl(V, g)→ ∧V (2)
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defines a Z-grading of the vector space underlying the Clifford algebra: there are elements
ak of Cl(V, g) of degrees deg ak = k = 0, 1, . . . ,m = dimV . The Clifford product of two
elements of degrees k and l decomposes as follows: akbl =

∑
p∈Z(akbl)p, and [28]

(akbl)p = 0 if p < |k − l| or p ≡ k − l + 1 mod 2 or p > m− |m− k − l|.

One puts Clk(V, g) = {a ∈ Cl(V, g) | deg a = k}. One often uses (2) to identify the
vector spaces ∧V and Cl(V, g); this having been done, one can write, for every v ∈ V and
a ∈ Cl(, g),

va = v ∧ a+ g(v)ya. (3)

4.1.3. The Chevalley theorem
If A = A0 ⊕ A1 is a Z2-graded algebra and a ∈ Aε, ε ∈ {0, 1}, then ε = χ(a) is said

to be the degree of a. If (V, g) and (W,h) are two quadratic spaces over k, then their
orthogonal sum is the quadratic space (V ⊕W, g ⊕ h) defined so that V ⊥ W and g ⊕ h
restricted to V (resp., to W ) is g (resp., h).

Definition 3. Let A = A0 ⊕ A1 and B = B0 ⊕ B1 be Z2-graded algebras over k. Their
graded tensor product A ⊗gr B is defined so that the its underlying vector space is the
tensor product of A and B, χ(a⊗ b) = χ(a) + χ(b) mod 2 and

(a1 ⊗ b1) ·gr (a2 ⊗ b2) = (−1)χ(b1)χ(a2)a1a2 ⊗ b1b2.

Note the appearance of a ‘supersymmetric’ factor in the last equation.

Theorem 3. Let (V, g) and (W,h) be two quadratic spaces over k. The algebras

Cl(V ⊕W, g ⊕ h) and Cl(V, g)⊗gr Cl(W,h)

are isomorphic.

4.1.4. Structure of Clifford algebras.
Theorem 4. If the dimension m of V over k is even (resp., odd), then the algebra Cl(V, g)
(resp. Cl+(V, g)), is central simple; as such it has only one, up to equivalence, irreducible
and faithful complex representation.

For every set U ⊂ V , one denotes by U⊥ the vector subspace of V consisting of all
vectors orthogonal to every element of U .

Theorem 5. If there is vector u ∈ V such that u2 = −1—this is always the case when
k = C—then the map u⊥ → Cl+(V, g) given by v 7→ uv has the Clifford property and
extends to an isomorphism of algebras Cl(u⊥, g|u⊥)→ Cl+(V, g).

The Clifford algebra of the complex vector space Cm is denoted by Clm; the Clifford
algebra of the real vector space Rm with a quadratic form of signature (k, l), k + l = m,
is denoted by Clk,l. For any algebra A, one denotes by 2A its double: as a vector space
this is A⊕A and multiplication is given by the formula (a1, a2)(b1, b2) = (a1b1, a2b2). As
a corollary of Theorems 4 and 5 one has
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Theorem 6. The algebras Clm−1 and Cl+m are isomorphic to each other; the algebra Cl2n
is isomorphic to the algebra C(2n) of complex matrices of order 2n and Cl+2n is isomorphic
to the semi-simple algebra 2C(2n−1). The algebras Clk,l−1 and Cl+k,l, l > 0, are isomorphic
to each other and the complexification C⊗Clk,l is isomorphic to Clk+l. The algebra Cln,n
is isomorphic to R(2n).

To describe the structure of all the embeddings Cl+k,l → Clk,l one can use the ‘spinorial
clock’ [E]

b
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To determine Cl0k,l → Clk,l, compute the corresponding hour h ∈ {0, . . . , 7}, l−k = h+8r,

r ∈ Z. Read off the sequence A0
h

h−→ Ah from the clock. If dimRAh = 2νh , then

Clk,l = Ah(2
1
2
(k+l−νh)), etc. The algebra Ah ⊗gr Ah′ is of the same type as Ah+h′ mod 8.

For a mathematician, the spinorial clock is a way of representing the statement that the
graded Brauer group of R is Z8 [39].

The expression Clifford algebra is used in several meanings. To characterize such an al-
gebra completely, one specifies how the underlying vector space V is embedded in Cl(V, g).
Somewhat less information is given by the injection Cl+(V, g) → Cl(V, g). Finally, one
can treat Cl(V, g) as an abstract algebra, forgetting where it comes from. For example, as
abstract algebras, the algebras Cl2,0 and Cl1,1 are both isomorphic to R(2), but Cl+2,0 = C
whereas Cl+1,1 = 2R. In dimension 8, the 3 vector spaces with g of signature (8, 0), (4, 4)
and (0, 8) have isomorphic full and even Clifford algebras.

4.1.5. Hodge duality.
Let (eµ), µ = 1, . . . ,m be an orthonormal frame in (V, g); for k = C it is convenient to

take g so that g(eµ, eν) = (−1)µδµν. Define the volume element associated with (eµ) as
η = e1e2 . . . em. Upon a change of orientation of the frame, the volume element changes
sign. One has

η2 = 1 for k = C and η2 = (−1)
1
2
(l−k)(l−k+1) for k = R and g of signature (k, l).

The Hodge dual of a multivector a of degree p is the multivector ?a = aη of degree m− p
and, by virtue of (3),

?(v ∧ a) = g(v)y ? a.
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4.2. Maximal, totally null subspaces of vector spaces
Consider a quadratic space (V, g) over k. Recall that a vector subspace N of V is said

to be null if N⊥ ∩N 6= ∅ and totally null if N ⊂ N⊥. Assume now V = C2n; if N ⊂ V
is maximal totally null (mtn), then N⊥ = N so that dimN = n. In the complex domain,
an orientation having been fixed, the Hodge duality map ? : ∧V → ∧V defined in §4.1.5
satisfies ?2 = id. If (m1, . . . ,mn) is a frame in an mtn subspace N , then

?(m1 ∧ · · · ∧mn) = ±m1 ∧ · · · ∧mn. (4)

The set of all mtn subspaces of C2n has the structure of a complex manifold, diffeomorphic
to the symmetric space O2n/Un; its two components correspond to the two signs in (4)
characterizing the mtn subspaces of positive and negative chiralities, respectively; see,
e.g., [25].

Let now (V, g) be a Euclidean quadratic space, i.e. a real quadratic space such that
the quadratic form ggg is positive-definite. Assume that V is of positive even dimension.
An mtn subspace N of the complexification W = C ⊗ V defines a complex orthogonal
structure J on (V, g): this is so because N ∩ N̄ = {0} and one can put

J(v) = iv and J(v̄) = −iv̄ for v ∈ N. (5)

Conversely, an orthogonal complex structure J on (V, g) defines the mtn subspace N =
{v ∈ W |J(v) = iv}.

Consider now a Lorentz space (V, g), defined as a real quadratic space such that the
quadratic form ggg is of signature (2n− 1, 1), n = 2, 3, . . .. Let N ⊂ W = C⊗ V be an mtn
subspace. The intersection N ∩ N̄ is the complexification of a null real line K ⊂ V and

N + N̄ = C⊗K⊥.

There is a real null line L such that V = K⊥ ⊕ L. The quotient K⊥/K inherits from
(V, g) the structure of a Euclidean quadratic space of dimension 2n − 2 and there is an
orthogonal complex structure J on K⊥/K, defined by

J(v mod C⊗K) = iv mod C⊗K for every v ∈ C⊗K⊥.

4.3. Representations of Clifford algebras
Let again (V, g) be a quadratic space over k and let Cl(V, g) be the corresponding

Clifford algebra.
(i) It follows from Theorem 4 that, for m = 2n, there is a unique, up to equivalence,
faithful and irreducible complex representation

γ : Cl(V, g)→ EndS (6)

of the algebra in the space S of Dirac spinors of dimension 2n. If (eµ), µ = 1, . . . , 2n, is
an orthonormal frame in V , then γµ = γ(eµ) are the corresponding Dirac matrices and

γµγν + γνγµ = 2gµν , gµν = g(eµ, ν).
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The matrix γ2n+1 = γ1γ2 . . . γ2n anticommutes with all Dirac matrices and its is either
the identity I = idS or −I. One defines Γ to be a matrix anticommuting with all Dirac
matrices and such that Γ 2 = I. The spaces of Weyl (chiral, reduced or half) spinors are

S± = {ϕ ∈ S | Γϕ = ±ϕ}

so that S = S+ ⊕ S−. The Weyl spinors belonging to S+ or S− are said, respectively, to
be of positive or negative chirality. The vector space S of Dirac spinors is Z2-graded: if
ϕ ∈ S±, then χ(ϕ) ∈ {0, 1} is defined by (−1)χ(ϕ) = ±1. The representation γ restricted
to Cl(V, g) decomposes into a direct sum of representations γ+ and γ− in the spaces S+ and
S−, respectively. The representation γ is Z2-graded in the sense that, for a ∈ Cl±(V, g)
and ϕ ∈ S±, one has χ(γ(a)ϕ) = χ(a) + χ(ϕ) mod 2.

The transposed matrices γ∗µ, µ = 1, . . . , 2n, define the contragredient representation
γ̌ of Cl(V, g) in the dual space S∗. This representation is equivalent to γ: there is an
isomorphism B : S → S∗ such that

γ∗µ = (−1)nBγµB
−1 for µ = 1, . . . , 2n+ 1 (7)

and

B∗ = (−1)
1
2
n(n+1)B. (8)

Denoting by ∼ equivalence of representations, it follows from BΓB−1 = (−1)nΓ that

γ̌± ∼ γ± for n even and γ̌± ∼ γ∓ for n odd.

(ii) For m = 2n+ 1 there are two irreducible, but not necessarily faithful, representations

σ± : Cl(V, g)→ EndS, such that σ+ ∼ σ ◦ α,

defined in the complex 2n-dimensional space of Pauli spinors. S. The representations σ+
and σ− are complex-inequivalent; if σ+(eµ) = σµ, then σ−(eµ) = −σµ. The kernel of σ−
(resp., σ+) is the vector space of self-dual (resp., antiself-dual) elements of C ⊗ Cl(V, g).
The direct sum σ+ ⊕ σ− is a faithful representation of Cl(V, g) in the space S+ ⊕ S− of
Cartan spinors. This representation appears in connection with the Dirac equation on
non-orientable, odd-dimensional Riemannian manifolds [31,13]. As in even dimensions,
there hold the equivalences

σ̌± ∼ σ± for n even and σ̌± ∼ σ∓ for n odd.

The restrictions of σ+ and σ− to Cl+(V, g) are equivalent and give the faithful irreducible
Pauli representation σ of Cl+(V, g) in the 2n-dimensional complex vector space S of Pauli
spinors.

4.3.1. An inductive form of representations of Clm.
It is convenient to use a frame in Cm as in §4.1.5. For every m = 2n + 1 one defines

a set of anticommuting ‘Pauli’ matrices σ1, . . . , σ2n+1 ∈ C(2n) and for every m = 2n one
defines a set of anticommuting ‘Dirac’ matrices γ1, . . . , γ2n ∈ C(2n) as follows.
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(i) For m = 1 put σ1 = 1.
(ii) Given the Pauli matrices for m = 2n− 1, n > 1, define the Dirac matrices for m = 2n
by

γk =

(
0 σk
σk 0

)
for k = 1, . . . , 2n− 1 and γ2n =

(
0 −I
I 0

)
.

where I ∈ C(2n−1) is the unit matrix.
(iii) Given the Dirac matrices for m = 2n, define the Pauli matrices for m = 2n + 1 as
follows

σk = γk for k = 1, . . . , 2n and σ2n+1 = γ1γ2 . . . γ2n.

Note that the matrices constructed in this manner have all entries real; they provide a
real representation of the real Clifford algebras Cln,n−1 and Cln,n for n > 1. By multiplying
by the imaginary unit i the matrices from a suitable subset of the σs or γs, one obtains a
set generating an irreducible, complex representation of Clk,l. For example, for m = 3, the
matrices (γ1, iγ2, γ3, γ4) generate a complex representation of Cl3,1. This algebra, however,
has a real, faithful and irreducible representation in R4.

4.3.2. Representations of Clk,l.
In view of the simplicity of Cl(V, g) for dimV = 2n, the complex conjugate represen-

tation γ̄ of Cl(V, g) in the space S̄ of complex conjugate spinors is also equivalent to γ:
there is an isomorphism C : S → S̄ such that

γ̄µ = CγµC
−1 for µ = 1, . . . , 2n. (9)

The spinor

ϕc = C−1ϕ̄ (10)

is said to be the charge conjugate of ϕ ∈ S. Since C̄C commutes with all the γs, by
rescaling, one can achieve either C̄C = I or C̄C = −I, depending on the signature of
the quadratic form associated with g: C̄C = I for l − k ≡ 0, 6 mod 8 and C̄C = −I for
l − k ≡ 2, 4 mod 8. Computing Γ̄ one obtains

γ̄± ∼ γ± for l − k = 0, 4 and γ̄± ∼ γ∓ for l − k = 2, 6.

Similarly, for m = 2n+ 1 one has

σ̄± ∼ σ± for l − k = 1, 5 and σ̄± ∼ σ∓ for l − k = 3, 7.

The map A = B̄ ◦ C : S → S̄∗ can be made Hermitian, A† = A, where A† = Ā∗

and γ†µ = (−1)nAγµA
−1. Incidentally, this notation (A,B and C for the intertwining

isomorphisms associated with representations of a Clifford algebra) was introduced, for
m = 4, by Pauli [20].

The Clifford algebra Clk,l exhibits a periodicity of B with respect to 2n = k + l and a
periodicity of C with respect to l − k; they imply a double periodicity, with period 8, of
Clk,l with respect to both k and l: this motivated us in choosing the title of [E].
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4.4. Spinor groups
The spin group Spin(V, g) is defined as the subset of Cl(V, g) consisting of Clifford prod-

ucts of all sequences of an even number of unit vectors. The representation γ restricted to
Spin(V, g) decomposes into the direct sum of two complex, inequivalent, irreducible rep-
resentations γ+ and γ− of the spin group in the spaces S+ and S−, respectively. Similar
remarks apply to the representations γ∗ and γ̄. It is convenient to abuse the language and
notation by identifying the carrier spaces with the representations themselves: there thus
are the representations S+, S−, S

∗
+, S

∗
−, S̄+, S̄−, etc. Recall that if ρ is a representation of

a group in a complex vector space, then the representations ρ ⊕ ρ̄ and ρ ⊗ ρ̄ are both
real. In particular, the representations S ⊗ S, S± ⊗ S̄± of Spin(V, g) are all real; the
representations S± ⊗ S± are real if S̄± ∼ S± and complex otherwise.

The adjoint action of the spin group in Cl(V, g) also defines a representation of the
group; it is, in fact, even a representation of SO(V, g). It is convenient to complexify this
representation; let W = C⊗V . The complex representation of Spin(V, g) in C⊗Cl(V, g) ∼
∧W decomposes according to the Z-grading of ∧W ,

∧W =⊕2n
k=0∧kW, (11)

and into the self-dual and anti-self-dual parts,

∧W = ∧+W ⊕∧−W,
where

∧±W = (I ± Γ )∧W.
The representations ∧kW and ∧n−kW , k = 0, 1, . . . , n− 1, are equivalent. For k 6= n, the
summands on the right of (11) are irreducible and there is the decomposition

∧nW = ∧n+W ⊕∧n−W,
into irreducibles.

The representation (6) implies the equivalence

S ⊗ S∗ ∼ ∧W.
of complex representations of the spin group. It follows from (7) that

S± ∼ S∗± for n even and S± ∼ S∗∓ for n odd.

If a ∈ ∧kW , then ΓaΓ−1 = (−1)ka. Therefore (see §3.3 in [G]),

S± ⊗ S± ∼ ∧n±W ⊕ ⊕
k≡n mod 2
06k6n−1

∧kW, S+ ⊗ S− ∼ ⊕
k≡n+1 mod 2
06k6n−1

∧kW, (12)

S± ⊗sym S±∼ ∧n±W ⊕ ⊕
k≡n mod 4
06k6n−1

∧kW and ∧2S± ∼ ⊕
k≡n+2 mod 4
06k6n−1

∧kW. (13)

The representation (6) extends to a representation of the complexified Clifford algebra;
if u, v ∈ V , then one puts γ(u+ iv) = γ(u) + iγ(v). If ϕ 6= 0, then the vector space

N(ϕ) = {w ∈ W = C⊗ V | γ(w)ϕ = 0} (14)

is totally null.
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4.5. Spinor algebra in dimension 4
Spinor calculus in dimension 4 provides an economical, convenient description of many

aspects of the geometry of Riemannian manifolds of this dimension. Since there are so
many exhaustive presentations of this subject [J,K], it suffices to give here the rudiments
of spinor algebra in a form adapted to our purposes.

If the dimension of the real vector space V is 4, then the space of Dirac spinors is also
four-dimensional. It follows from (7) and (8) that, in this case, B restricts to a symplectic
form on each of the spaces of Weyl spinors S+ and S−; following a tradition that goes back
to van der Waerden [36], these restrictions are denoted by ε. The representations S± and
S∗± are thus equivalent, S± ∼ S∗±: spinor indices can be lowered by means of ε and raised by
means of its inverse. In the van der Waerden-Penrose notation, one labels the components
of spinors in S+ and S− with letters such as A,B, . . . = 1, 2 and A′, B′, . . . = 1, 2, and of
those in S̄+ and S̄− by ‘dotted indices’, Ȧ, Ḃ, . . . = 1, 2 and Ȧ′, Ḃ′, . . . = 1, 2, respectively
[32]. Thus, if (eA) is a frame in S∗+ dual to the ‘spin frame’ (eA) in S+ and ϕ ∈ S+, then
ϕ = ϕAeA and ε(ϕ) ∈ S∗+, ε(ϕ) = εABϕ

BeA, where εAB = ε(eA, eB). One usually uses

only unimodular spin frames, i.e. such that ε12 = 1. If ϕ ∈ S+, then ϕ̄ = ϕ̄ȦeȦ, where

ϕ̄Ȧ = ϕA, if, moreover, S̄± ∼ S±, then C(eA) = CA
ḂeḂ, etc.

It follows now from the first equivalence in (13) that S± ⊗sym S± ∼ ∧2
±W . Given

0 6= ϕ ∈ S±, the complex, decomposable bivector corresponding to ϕ ⊗ ϕ is associated
with N(ϕ) as in (4).

There are three cases to consider, depending on the signature of ggg.

1. If (V, g) is Euclidean, then γ25 = I, so that one can take γ = γ5. This implies
Cγ = γ̄C and S̄± ∼ S± so that there is no need for dotted indices. Since C̄C = −I there
are no real (‘Majorana’) spinors: the representations S and S± are all quaternionic.

Let

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

be the Pauli matrices. A convenient representation of the Dirac matrices is

γ1 =

(
0 σx
σx 0

)
, γ2 =

(
0 σy
σy 0

)
, γ3 =

(
0 σz
σz 0

)
, γ4 =

(
0 iI
−iI 0

)
,

so that

γ5 =

(
I 0
0 −I

)
, C =

(
ε 0
0 −ε

)
, and A =

(
I 0
0 I

)
. (15)

Let 0 6= ϕ ∈ S+ so that ‖ϕ‖2 = 〈ϕ,Aϕ〉 > 0. From (12) it follows that

ϕ⊗ Aϕ = 1
2
iF + 1

4
(I + γ5)‖ϕ‖2, (16)

where F = 1
2
F µνγµγν is a real, self-dual bivector and F µνFµν = ‖ϕ‖4. The self-duality of

F implies the vanishing of the corresponding ‘energy-momentum tensor’,

F µσF ν
σ − 1

4
hµνF λκFλκ = 0.
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Therefore, the tensor

Jµν = 2F µ
ν/‖ϕ‖2 satisfies JµσJ

σ
ν = −δµν (17)

and defines a complex structure in V , equivalent to the one defined by the mtn subspace
N(ϕ).

2. If (V, g) is Lorentzian, then γ25 = −I, so that Γ = iγ5 and S̄± ∼ S∓: dotted indices
can be replaced by the primed ones (Penrose’s choice). Since C̄C = I there are real
Dirac spinors, but, in view of CΓ = −Γ̄C, no real Weyl spinors. In other words, the
representation S is real and the representations S± are both complex.

A representation of the Dirac matrices is

γ1 =

(
0 σx
σx 0

)
, γ2 =

(
0 σy
σy 0

)
, γ3 =

(
0 σz
σz 0

)
, γ4 =

(
0 −I
I 0

)
,

so that

γ5 =

(
iI 0
0 −iI

)
, C =

(
0 σy
−σy 0

)
and A =

(
0 I
I 0

)
If 0 6= ϕ ∈ S±, then

ϕ⊗ Aϕ = (I ∓ iγ5)k
µγµ,

where k is a real null vector, spanning the line N(ϕ) ∩N(ϕ).

3. If the signature of ggg is (2, 2) (‘neutral’ or ‘split’), then γ25 = I, so that CΓ = Γ̄C
and S̄± ∼ S± as in the Euclidean case. Since now C̄C = I, the representations S and S±
are all real.

An explicit real representation is given by

γ1 =

(
0 σx
σx 0

)
, γ2 =

(
0 iσy

iσy 0

)
, γ3 =

(
0 σz
σz 0

)
, γ4 =

(
0 −I
I 0

)
,

so that

γ5 =

(
I 0
0 −I

)
, C =

(
I 0
0 I

)
and A =

(
σy 0
0 −σy

)
.

Let 0 6= ϕ ∈ S+. There are two cases to consider:
(i) If ϕ is (proportional to) a real spinor, then ‖ϕ‖ = 0 and N(ϕ) = N(ϕ) is the

complexification of a real, two-dimensional mtn subspace L of V . The bivector F defined
as in (16) is the exterior product of two vectors spanning L.

(ii) If ‖ϕ‖ 6= 0, then N(ϕ)∩N(ϕ) = {0} and J , defined as in (17), determines a complex
structure on V .
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4.5.1. The algebraic classification of Weyl tensors
Consider an element ϕ of the symmetric tensor product ⊗r

symS
∗
+. If ϕ 6= 0, then there

is a frame (eA), A = 1, 2, in S+ such that the component ϕ1...1 = ϕ(e1, . . . , e1) is not
zero. Given such a frame, let ψ(z) = ze1 + e2 ∈ S+, z ∈ C, and consider the complex
polynomial pϕ of degree r,

pϕ(z) = ϕ(ψ(z), . . . , ψ(z)) = ϕ1...1z
r + · · ·+ ϕ2...2.

Let {z1, . . . , zr} be the set of all roots of this polynomial; a root of multiplicity s appears
s times in the set. Then

ϕ = ϕ1...1ψ
1 ⊗ · · · ⊗ ψr, where ψiA = εABψ(zi)

B, i = 1, . . . , r.

The spinors ψi are eigenspinors (with eigenvalue 0) of ϕ. The algebraic type of ϕ is the
sequence [[[s1 . . . sk]]], 1 6 s1 6 · · · 6 sk 6 r, s1 + · · · + sk = r, of the multiplicities of the
roots of pϕ. In the generic case, all roots are simple, s1 = · · · = sr = 1. Otherwise, one
says that ϕ is algebraically degenerate.

For even r = 2l, the (2l + 1)-dimensional representations S2l
± = ⊗2l

symS
∗
± are tensorial:

they are representations of O4(C). For example, for r = 2, every algebraically degenerate
element of S∗+⊗symS

∗
+ is of the form ψ⊗ψ for some ψ ∈ S∗+: it corresponds to a self-dual,

decomposable bivector. If S̄± ∼ S±, then the representations S2l
± are real. For example,

the reality condition for ϕ ∈ S2
+ is

CA
ȦCB

Ḃϕ̄ȦḂ = ϕAB. (18)

The spaces ⊗4
symS

∗
+ and ⊗4

symS
∗
− are isomorphic to spaces of tensors of rank 4 over W =

C4, with symmetries of self-dual and anti-self-dual Weyl (conformal curvature) tensors,
denoted by C+ and C−, respectively. The enumeration of the possible degeneracies can
be traced back to Cartan [9]; physicists use it now in a form due to Penrose [21]:

(i) Type I (non-degenerate) [[[1111]]],
(ii) Type II [[[112]]],

(iii) Type III [[[13]]],
(iv) Type D (‘degenerate’) [[[22]]],
(v) Type N (‘null’) [[[4]]].

I

?
II

?

D

?
III N 0- -

-

�
��+

�
��+

�
��+

The 0 in the Penrose diagram above represents a vanishing ϕ. The arrows point towards
more special cases. This classification of complex, self-dual Weyl tensors is often associ-
ated with the name of Petrov, who, however, recognized only three types (I, II and III).
The Weyl tensor of a complex Riemannian manifold decomposes into its self-dual and
anti-self-dual parts; their algebraic types are independent.

In the case of real manifolds, one has to consider separately each signature. I restrict
myself to the proper Riemannian and Lorentz cases.

1. In the proper Riemannian case, the Weyl tensor decomposes into the real, self-dual
and anti-self-dual parts; they are independent. The self-dual part is represented by a
spinor ϕ ∈ S4

+ that satisfies a reality condition analogous to (18); in view of (15) this
implies the equality

pϕ(z) = z̄4pϕ(−1/z̄)
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which shows that the eigenspinors of ϕ occur in pairs (ψ, ψc), where ψc is the charge
conjugate of ψ ∈ S∗+. Therefore, there are only two types of ϕ 6= 0: either these two pairs
are distinct (type I) or they coincide (type D). Similar remarks apply to the anti-self-
dual part of the Weyl tensor. Therefore, the complete algebraic classification of the Weyl
tensor of a proper Riemannian 4-dimensional manifold contains 9 cases; (I,I) is the most
general case and (0,0) represents conformally flat manifolds. The cases (∗, 0) and (0, ∗)
are referred to as self-dual and anti-self-dual, respectively.

2. In the Lorentzian case, the real Weyl tensor decomposes into its self- and anti-
self-dual parts, which are complex, C = C+ + C−, where ?C± = ±iC± so that C̄+ =
C−. Therefore, the classification is given by that of the complex, self-dual Weyl tensor
presented above.

4.6. Multivectors associated with pairs of spinors
The tensor product of two spin representations of Spin(V, h) is a representation of

SO(V, h); this simple fact underlies the physicists’ construction of (real) multivectors
from spinors.

4.6.1. The complex case.
mmm odd

Consider first an odd -dimensional complex vector space W = C2n+1 (n = 1, 2, . . . ) and
the corresponding Pauli representation σ : Cl+2n+1 → EndS; see §4.3.

The representations σ± can be described explicitly as follows. Consider a Witt decom-
position W = N ⊕ P ⊕Ce2n+1, where N and P are n-dimensional—therefore maximal—
totally null subspaces of W and e2n+1 is a unit vector orthogonal to V = N ⊕ P . One
takes S = ∧N and, writing an element of W as n+ p+ ze2n+1, where n ∈ N , p ∈ P and
z ∈ C, one puts σ±(n+ p+ ze2n+1) = ±(

√
2(e(n) + i(p)) + zαN).

Let β be the antiautomorphism of Cl2n+1 defined by β(a) = at for n even and β(a) =
α(a)t for n odd so that β(η) = η for every n. The two representations a 7→ σ±(β(a))∗

of Cl2n+1 in S∗ are equivalent to the corresponding representations σ±: there exists an
isomorphism B : S → S∗ such that σ±(β(a))∗ = Bσ±(a)B−1 for every a ∈ Cl2n+1.
Iterating and using Schur’s lemma one obtains B∗ = εB, where either ε = 1 or ε = −1.
To determine ε, note that (Bσ(a))∗ = εBσ(at) for every a ∈ Cl+2n+1. Since dim{f : S →
S∗ | f ∗ = f} > dim{f : S → S∗ | f ∗ = −f}, one has ε = sgn (dimA+

n − dimA−n ),
where A±n = {a ∈ Cl+2n+1 | at = ±a}. Moreover, dimA+

n − dimA−n =
∑n

p=0(−1)p
(
2n+1
2p

)
=

2n
√

2 cos(2n+ 1)π
4
; this gives (8). For every a ∈ Cl+2n+1 one has

σ(a)∗ = Bσ(at)B−1. (19)

The isomorphism B defines a non-degenerate quadratic forms B ⊗ B−1 and B ⊗ B on
EndS and S⊗S, respectively. Namely, if f ∈ EndS, then (B⊗B−1)(f) = tr(B−1◦f ∗◦B◦
f); if ϕ, ψ ∈ S, then (B ⊗ B)(ϕ⊗ ψ) = 〈ϕ,Bϕ〉〈ψ,Bψ〉; the linear map S ⊗ S → EndS
defined by ϕ ⊗ ψ 7→ ϕ ⊗ Bψ is an isometry for these quadratic forms. Similarly, the
algebra Cl+2n+1 has a quadratic form H, H(a) = 2−ntrσ(ata) and σ is an isometry of
(Cl2n+1, H) onto (EndS, 2−nB ⊗ B−1). The even exterior algebra ∧+W has a quadratic
form ∧+ggg obtained by extension of ggg; the isomorphism (2) restricted to Cl+2n+1 is an
isometry equivariant with respect to the action of the spin group. This leads to (see
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Prop. 4. 2. in [E] and Prop. 2 in [32])

Proposition 1. Let σ : Cl+2n+1 → S be the Pauli representation. There then exists an
isomorphism B : S → S∗ such that (8) and (19) hold. The bilinear map

E : S × S → ∧+W, E(ϕ, ψ) = c ◦ σ−1(ϕ⊗Bψ),

(i) satisfies

E(ψ, ϕ) = (−1)
1
2
n(n+1)E(ϕ, ψ)t;

(ii) if v ∈ W , then
E(σ+(v)ϕ, ψ) = (i(v) + e(v)) ? E(ϕ, ψ);

(iii) if a ∈ Spin2n+1(C), then

E(σ(a)ϕ, σ(a)ψ) = ∧ρ(a) ◦ E(ϕ, ψ);

(iv) the linear map S ⊗ S → ∧+W , associated with E, is an isometry of the quadratic
space (S⊗S, 2−nB⊗B) onto (∧+W, ∧+h) which is equivariant with respect to the action
of the group Spin2n+1(C).

The component of E in ∧2pW is denoted by E2p. In particular, E0(ϕ, ψ) = 2−n〈ϕ,Bψ〉.
The bilinear form E0 is invariant with respect to the action of Spin2n+1(C). More generally,
if a ∈ Cl+2n+1 and ata = 1, then 〈σ(a)ϕ,Bσ(a)ψ〉 = 〈ϕ,Bψ〉. According to part (i) of Prop.
1, one has

E2p(ψ, ϕ) = (−1)
1
2
n(n+1)+pE2p(ϕ, ψ).

Putting ν equal to the integer part of 1
2
(n+ 1), one obtains that

if ν − p is odd, then E2p(ϕ, ϕ) = 0. (20)

mmm even

Consider now the 2n-dimensional subspace V of W = C2n+1 orthogonal to the unit
vector e2n+1. The algebra Cl2n can be identified with a subalgebra of Cl2n+1; the Clifford
map V → Cl+2n+1, v 7→ ηv, extends to an isomorphism of algebras j : Cl2n → Cl+2n+1.
Since j(v)t = (−1)mj(v), one has j(a)t = j(β(a)) for every a ∈ Cl2n. The element
ηe2n+1 = e1 · · · e2n is a volume in V . The composition γ = σ◦j is the ‘Dirac’ representation
of the algebra Cl2n in S. One has σ±(eµ) = ±γµ for µ = 1, . . . , 2m and σ±(e2m+1) = ±Γ .
These definitions imply (7) and (8).

Let k : ∧V → ∧+W be the isomorphism of vector spaces such that k ◦ c = c ◦ j;
explicitly, it is given by k(w) = w for w ∈ ∧+V and k(w) = ?w for w odd, w ∈ ∧−V .
Let ∗ denote the Hodge dual in V so that c(ηe2n+1a) = ∗c(a) for a ∈ Cl2n. Consider the
bilinear map

F = k−1 ◦ E : S × S → ∧V.
Denoting by Fp(ϕ, ψ) the component of F (ϕ, ψ) in ∧pV , one obtains, as a corollary of
part (i) of Prop. 1,

Fp(ψ, ϕ) = (−1)
1
2
(n−p)(n−p+1)Fp(ϕ, ψ). (21)
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Putting v = e2n+1 in part (ii) and using σ+(e2n+1) = σ(ηe2n+1) leads to

F (Γϕ, ψ) = ∗F (ϕ, ψ) and F (ϕ, Γψ) = (−1)nα ◦ ∗F (ϕ, ψ). (22)

If ∧V is given the quadratic form ∧ggg, then k becomes an isometry of (∧V, ∧ggg) onto
(∧+W, ∧+ggg). As a corollary from Prop. 1 one obtains that the map

S ⊗ S → ∧V, given by ϕ⊗ ψ 7→ c ◦ γ−1(ϕ⊗Bψ),

is an isometry of the corresponding quadratic spaces, equivariant with respect to the
action of Spin2n(C).

Recall that γ restricted to the Cl+2n decomposes into the direct sum of the Weyl repre-
sentations γ+ and γ− in s S+ and S−. If ϕ and ψ are both Weyl spinors with respect to
γ, then (7) and (21) give

if χ(ϕ) + χ(ψ) + n+ p ≡ 1 mod 2, then Fp(ϕ, ψ) = 0.

In particular, if ϕ is a Weyl spinor, then Fp(ϕ, ϕ) = 0 unless p ≡ n mod 4.
If the representation γ comes from a representation σ constructed in terms of a Witt

decomposition, so that S = ∧N , then Γ = αN and S± = ∧±N .

4.6.2. The real case.
Consider now the real vector space Rm with a quadratic form ggg of signature (k, l), k+l =

m. If (e1, . . . , em) is a frame orthonormal with respect to g, then the volume element

η = e1 · · · en satisfies η2 = (−1)
1
2
(l−k)(l−k+1). The complexification of the Clifford algebra

Clk,l is isomorphic with Clm.
mmm odd

Let m = 2n + 1. The Pauli representation of Cl+2n+1, restricted to Cl+k,l, yields a
representation σ of this real algebra in a 2n-dimensional, complex vector space S. The
representation σ can be extended to the representations σ+ and σ− of Clk,l in S by putting
σ±(η) = ±idS when η2 = 1 and σ±(η) = ±i idS when η2 = −1.

With every representation τ of a real algebra A in a complex vector space S one can
associate the complex conjugate representation τ̄ in S̄, given by τ(a) = τ(a) for every
a ∈ A. Since Cl+k,l is central simple for k+ l odd, its representations σ and σ̄ are complex-
equivalent; if η2 = 1, then the representations σ± are equivalent to the corresponding
representations σ±; if η2 = −1, then σ+ is equivalent to σ−. In every case there is a linear
isomorphism

C : S → S such that σµ = (−1)
1
2
(l−k)(l−k+1)CσµC

−1, where σµ = σ+(eµ)

for µ = 1, . . . , k + l = 2n+ 1. An argument similar to the one used with respect to B in
§4.6.1 shows that C can be rescaled so that either C̄C = idS or C̄C = −idS. Moreover,
one obtains from (19) and

σ(a) = Cσ(a)C−1, a ∈ Cl+k,l,

that C−1B̄−1C̄∗B∗ is in the commutant of σ; therefore, one can rescale B so that

B = C∗B̄C
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and then the sesquilinear form

A : S × S → C, given by A(ϕ, ψ) = 〈ϕ̄, B̄Cψ〉

is either Hermitean or anti-Hermitean.
The charge conjugate ϕ′c of ϕ′ ∈ S∗ is defined so that 〈ϕc, ϕ′c〉 = 〈ϕ, ϕ′〉; by virtue of

(14), if ϕ′ = Bψ, then ϕ′c = Bψc. There are two cases to consider:
(i) The real case: if l−k ≡ 1 or 7 mod 8, then C̄C = idS; there is then the 2n-dimensional
real vector space

SR = {ϕ ∈ S | ϕc = ϕ}.

and a decomposition of S into complementary subspaces of ‘Majorana’ spinors, S = SR⊕
i@, SR. The representation σ is real: σ(a)SR ⊂ SR for every a ∈ Cl+k,l. The automorphisms
σµ = σ+(eµ) are real (resp., pure imaginary) for l − k ≡ 7 mod 8 (resp., l − k ≡ 1
mod 8). The algebra Cl+k,l is isomorphic to the matrix algebra R(2n). The algebra Clk,l is
isomorphic to R(2n)⊕R(2n) (resp., C(2n)) for l−k ≡ 7 mod 8 (resp., l−k ≡ 1 mod 8).
The form A restricted SR is real and has the same symmetry as B.
(ii) The quaternionic case: if l − k ≡ 3 or 5 mod 8, then C̄C = −idS and S can be
given the structure of a right module over H. Explicitly, denoting by i, j and k = ij the
quaternionic units, one puts ϕi =

√
−1ϕ and ϕj = ϕc. The algebra Cl+k,l is isomorphic to

the matrix algebra H(2n−1). The algebra Clk,l is isomorphic to 2H(2n−1) (resp., C(2m))
for l − k ≡ 3 mod 8 (resp., l − k ≡ 5 mod 8).

The vector space A = {f ∈ EndS | f̄C = Cf} is a real algebra spanned by all elements
of the form ϕ ⊗ ϕ′ + ϕc ⊗ ϕ′c, where ϕ ∈ S and ϕ′ ∈ S∗. The representation σ factors
through the injection A → EndS. Moreover, in the real case, the algebra A is isomorphic
to SR ⊗R SR. In the quaternionic case, it is isomorphic to the tensor product over H of
the right H-module S by the left H-module S∗. In each case one has

E(ϕ, ψ) = E(ϕc, ψc).

The homogeneous components of the multivector E(ϕc, ϕ) are either real or imaginary,
as can be seen from part (i) of Prop. 1 and ϕcc = CC̄ϕ.

The quadratic form H on Cl+k,l, k + l = 2n + 1, H(a) = 2−ntrσ(ata), is real; its

signature can be evaluated as follows. Consider the polynomial ς(ξ, η) = 1
2
(1 + ξ)k(1 +

η)l+ 1
2
(1−ξ)k(1−η)l =

∑
p,q; p+q even

(
k
p

)(
l
q

)
ξpηq. The index of H equals ς(1,−1). Therefore,

H is positive-definite if, and only if, either k = 0 or l = 0; if both k and l are positive,
then H is neutral.

mmm even

Consider now the even-dimensional subspace V of Rk+l, orthogonal to a unit vector
u. Depending on whether u2 = 1 or −1, the signature of the restriction gggV of ggg to V
is (k − 1, l) or (k, l − 1). The map V → Cl+k,l, v 7→ vη, extends to an isomorphism of

algebras j : Cl(V, η2hV ) → Cl+k,l: if η2 = 1 (resp., η2 = −1), then Cl+k,l is isomorphic to
both Clk−1,l and Clk,l−1 (resp., Cll−1,k and Cll,k−1).

If k + l = 2n and γ : Clk,l → EndS is a Dirac representation in a complex space S of

dimension 2n, then there is C : S → S̄ such that γ(a) = Cγ(a)C−1 for every a ∈ Clk,l.
According to previous remarks, one can rescale C so that either C̄C = idS (for l − k ≡ 0
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or 6 mod 8) or C̄C = −idS (for l − k ≡ 2 or 4 mod 8). It is convenient to define the

chirality automorphism as Γ = (−1)
1
4
(l−k)(l−k+1)γ1 · · · γ2m so that

Γ 2 = idS and Γ̄ = (−1)
1
2
(l−k)(l−k+1)CΓC−1.

The representation γ, restricted to Cl+k,l decomposes as in the complex case, γ = γ+⊕γ−.

The representation γ̌ of Cl+k,l in S∗, contragredient to γ, is defined by γ̌(a) = γ(at)∗, a ∈
Cl+k,l. It also decomposes, γ̌ = γ̌+ ⊕ γ̌−, where γ̌± : Cl+k,l → EndS∗±, S∗± = {ϕ ∈ S |
Γ ∗ϕ = ±ϕ}. There is also a similar decomposition γ̄ = γ̄+ ⊕ γ̄− of γ̄ restricted to Cl+k,l.
The representations γ+ and γ− are not complex-equivalent; each of the representations
γ̌+, γ̌−, γ̄+ and γ̄− is equivalent to either γ+ or γ−; see §4.3.

5. Pure spinors

Consider a non-zero spinor ϕ ∈ S associated with W = C2n+1. The vector space

N(ϕ) = {v ∈ W | σ(ηv)ϕ = 0}

is totally null; its dimension is called the nullity of ϕ. A spinor ϕ 6= 0 is said to be pure if its
nullity is maximal, i. e. equal to n. Let W = N⊕P ⊕Cu be a Witt decomposition and let
(n1, . . . , nn) be a basis of N . Put aN = n1 · · ·nn for n even and aN = ηn1 · · ·nn for n odd,
so that aN ∈ Cl+2n+1. Since σ is faithful, there is a spinor ϕ0 such that ϕ = σ(aN)ϕ0 6= 0
and then N(ϕ) = N so that ϕ is pure. If ψ is another spinor such that N(ψ) = N , then
there is z ∈ C× such that ψ = zϕ: there is a bijective correspondence between the set (in
fact, a compact, connected, complex manifold Σ2n+1 of complex dimension 1

2
n(n+ 1)) of

directions of pure spinors and the set of maximal null subspaces of W . If a ∈ Spin2n+1(C)
and ϕ is pure, then σ(a)ϕ is also pure; the induced action of Spin2n+1(C) on Σ2n+1 is
transitive.

Let ϕ 6= 0 be a spinor of nullity q. Let (n1, . . . , nq) be a basis of N(ϕ). It follows from
part (ii) of Prop. 1 and (20) that n ∈ N(ϕ) implies e(n)E2p(ϕ, ϕ) = 0 and i(n)E2p(ϕ, ϕ) =
0 for every p such that p ≡ ν mod 2. Therefore, there is a (2p− q)-vector E ′2p−q such that
E2p(ϕ, ϕ) = n1 ∧ · · · ∧ nq ∧ E ′2p−q and i(n)E ′2p−q = 0 for every n ∈ N(ϕ). This implies
that if 2p < q or 2p > 2m + 1 − q, then E2p(ϕ, ϕ) = 0. In particular, if ϕ is pure, then
E2p(ϕ, ϕ) 6= 0 if, and only if, p = ν. A more precise result is contained in

Theorem 7. A spinor ϕ 6= 0 is pure if, and only if, p 6= ν implies E2p(ϕ, ϕ) = 0. If ϕ is
pure, then there is a basis (n1, . . . , nn) of N(ϕ) such that

if n is even, then En(ϕ, ϕ) = n1 ∧ · · · ∧ nn;

if n is odd, then ? En+1(ϕ, ϕ) = n1 ∧ · · · ∧ nn.

The somewhat difficult proof of the ‘if’ part of Theorem 7 appears in [F,G]. By con-
sidering the multivectors E2p(ϕ, ϕ) for low values of n, one obtains, as a corollary of (20)
and Theorem 7 that all spinors associated with W of dimension 3 and 5 are pure; in
dimensions 7 and 9 pure spinors belong to the cone of equation E0(ϕ, ϕ) = 0.



19

If ϕ is pure and v ∈ W is non-null, v2 6= 0, then σ(ηv)ϕ is also pure: N(σ(ηv)ϕ) =
vN(ϕ)v−1. In particular, if N(ϕ) is orthogonal to the unit vector e2n+1, then

N(σ(ηe2n+1)ϕ) = N(ϕ).

Therefore, σ(ηe2n+1)ϕ = ±ϕ. Introducing, as in part (ii) of §4.6.1, the 2n-dimensional
space V orthogonal to e2n+1, one obtains, as a corollary of Theorem 7 and (22):

Theorem 8. Let W = V ⊕ Ce2n+1 and γ be the Dirac representation of Cl2n in S,
γ(v) = σ(ηv) for v ∈ V . If ϕ is pure, then N(ϕ) ⊂ V if, and only if, ϕ is a Weyl spinor
with respect to γ. Assuming that ϕ is such a spinor, one has Fp(ϕ, ϕ) = 0 for every p 6= n
and there is a basis (n1, . . . , nn) in N(ϕ) so that

Fn(ϕ, ϕ) = n1 ∧ · · · ∧ nn.

The n-vector Fn(ϕ, ϕ) is either self-dual (Γϕ = ϕ) or antiself-dual (Γϕ = −ϕ).

In other words, in even-dimensional complex vector spaces, tensor squares of pure
spinors define self- or antiself-dual decomposable multivectors of the middle degree. A
pure spinor ϕ associated with the representation γ : Cl2n → EndS can be characterized,
without reference to the odd-dimensional space W , by dim{v ∈ C2n | γ(v)ϕ = 0} = n; it
follows that it is a Weyl spinor. The set of directions of pure spinors associated with γ is
a 1

2
n(n− 1)-dimensional complex compact manifold Σ2n = O2n/Un; it has two connected

components, Σ+
2n and Σ−2n, corresponding to pure spinors of opposite chiralities. An

argument similar to the one used in odd dimensions shows that, in dimensions 2, 4 and
6 all Weyl spinors are pure. In dimension 8 pure spinors lie on the cones of equation
F0(ϕ, ϕ) = 0 in S+ and S−; in dimension 10 pure spinors are characterized by the equation
F1(ϕ, ϕ) = 0 in S± and generic Weyl spinors have nullity 1; for n = 4 and n > 5 generic
Weyl spinors have zero nullity. Spinors belonging to one orbit of the group Spin2n(C)
have the same nullity, but the converse is not true: in dimensions > 12 nullity of Weyl
spinors provides a rather coarse classification of the orbits. There are no Weyl spinors of
nullity q such that n − 4 < q < n. All homogeneous polynomial invariants of the spin
group vanish on spinors of positive nullity [35].

6. THE CALCULUS OF SPINORS

6.1. Covariant differentiation of spinor fields
This section is adapted from [34]. To present the notion of covariant differentiation of

spinor fields in a language familiar to physicists it is convenient to use the terminology
of gauge fields. For simplicity, consider an even-dimensional manifold, k + l = 2n, put
G = Pink,l and let a representation of Clk,l in S be given by the Dirac matrices γµ ∈ EndS.
A spinor field is now a map ψ : M → S; given a function U : M → G, one defines the
gauge-transformed spinor field as ψ′ = U−1ψ, ψ′(x) = U(x)−1ψ(x) for x ∈ M . A spinor
connection (‘gauge potential’) is a 1-form ω on M with values in the Lie algebra of G, i.e.
in Cl2k,l ⊂ EndS; therefore, it can be written as ω = 1

4
γµγνωµν , where ωµν = −ωνµ are

1-forms. The covariant (‘gauge’) derivative of ψ is

Dψ = dψ + ωψ. (23)
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The gauge transformation U induces a change of the connection, ω 7→ ω′ = U−1ωU +
U−1dU so that (Dψ)′ = U−1Dψ. Since the dimension of M is even, the adjoint repre-
sentation is onto Ok,l and one can define, for every a ∈ Pink,l ⊂ GL(S), the (orthogonal)
matrix (ρµν(a)) by a−1γµa = ρµν(a)γν , so that a−1γµa = γνρ

ν
µ(a−1). From the Lemma:

if a ∈ Clpk,l, then gµνγµaγν = (−1)p(n−2p)a, taking into account that U−1dU is in the Lie
algebra of G—therefore of degree p = 2—one obtains gµνU−1γµUd(U−1γνU) = 4U−1dU
so that ω′µν = ρµk(U

−1)ωklρ
l
ν(U) + ρµk(U

−1)dρkν(U). Let (eµ) be a field of orthonor-
mal frames on M and let (eµ) denote the dual field of coframes. Since, by definition,
ωµν+ωνµ = 0, the 1-forms (ωµν) define a metric linear connection. Its torsion deµ+ωµν∧eν
need not be zero.

The action of the Dirac operator D on a spinor field is Dψ = γµeµyDψ, where y denotes
contraction.

6.2. Charge conjugation and the Dirac equation
The notion of charge conjugation, defined originally by physicists for spinors associated

with Minkowski space, admits a generalization to higher dimensions [E]. It is presented
here for the case of an even-dimensional, flat space-time R2n with a Lorentzian metric
of signature (2n − 1, 1). Recall (see §4.3.2) the definition of the charge conjugate ϕc of
ϕ ∈ S. If ϕ is a Weyl spinor, then ϕc is also such a spinor and its chirality is the same
as (resp., opposite to) that of ϕ if η2 = 1 (resp., if η2 = −1). If C̄C = idS, then the map
ϕ 7→ ϕc is involutive, (ϕc)c = ϕ, and there is the real vector space

SR = {ϕ ∈ S : ϕc = ϕ}

of Dirac-Majorana spinors.
The intertwiner C satisfies

C̄C = (−1)
1
2
(n−1)(n−2)idS. (24)

The Dirac equation for a particle of mass m and electric charge e can be written as

γµ(∂µ − ieAµ)ψ = mψ, (25)

where ψ : R2n → S is the wave function of the particle and Aµ, µ = 1, . . . , 2n, are
the (real) components of the vector potential of the electromagnetic field. For a free
particle (Aµ = 0) one can consider a solution of (25) equal to a constant spinor times
exp ipµx

µ; the Dirac equation then implies that the momentum vector (pµ) is time-like:
p22n = p21 + · · ·+ p22n−1 +m2. The charge conjugate wave function ψc : R2n → S is defined
by ψc(x) = ψ(x)c for every x ∈ R2n.

Proposition 2. If ψ : R2n → S is a wave function, then
(i) the vector field of current defined by

jµ(ψ) = in+1〈Bγ2n+1ψc, γ
µψ〉, µ = 1, . . . , 2n, (26)

is real and invariant with respect to the replacement of ψ by ψc,

jµ(ψc) = jµ(ψ); (27)
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(ii) if ψ is a solution of the Dirac equation (25), then the current is conserved,

∂µj
µ(ψ) = 0, (28)

and the charge conjugate wave function satisfies the Dirac equation for a particle of charge
−e,

γµ(∂µ + ieAµ)ψc = mψc. (29)

The proof of part (i) the Proposition consists of simple, algebraic transformations,
making use of equations (7), (9), (10), and (24). Complex conjugating both sides of (25),
multiplying the resulting equation by C−1 on the left and using (9) and (10) one obtains
that ψc satisfies (29); it is then easy to check that (28) holds.

These simple observations are valid irrespective of whether the algebra Cl2n−1,1 is real
(C̄C = idS; n ≡ 1 or 2 mod 4) or quaternionic (C̄C = −idS; n ≡ 0 or 3 mod 4).
Charge conjugation is not related to the existence of Majorana spinors: even if the algebra
Cl2n−1,1 is real, one has to use complex spinors to write the Dirac equation for a charged
particle interacting with an electromagnetic field. The invariance of the current under the
replacement of ψ by ψc, expressed by (27), reflects the classical (or rather: first-quantized)
nature of the Dirac equation under consideration here. Upon second quantization, the
wave function is replaced by an anticommuting , spinor-valued field Ψ ; anticommutativity
of Ψ and Ψc provides a change of sign, so that (27) is replaced by jµ(Ψc) = −jµ(Ψ).

6.3. The spinorial form of the Weierstrass solution
In view of its importance, I recall here the Weierstrass solution of the equation of

minimal surfaces in R3; further details can be found in Ch. 3 §2 of [10]. Consider a
surface in R3 described locally by the map r : R2 → R3. If u and v are coordinates
on R2, then the line element induced on the surface is ru · rv dudv, where ru = ∂r/∂u
and rv = ∂r/∂v. The determinant of the metric tensor is (ru × rv)

2. A minimal surface
minimizes the area integral∫

L dudv, where L =
√

(ru × rv)2.

The Euler–Lagrange equations for the area integral are

∂

∂u

∂L

∂ru
+

∂

∂v

∂L

∂rv
= 0.

Since every surface in R3 is locally conformal to the plane, one can restrict the coordinates
u, v so that

r2u = r2v 6= 0 and ru · rv = 0. (30)

They are defined up to transformations u + iv 7→ f(u + iv), where the function f is
holomorphic. In these coordinates, the Euler–Lagrange equations reduce to

∆r = 0, where ∆ = ∂2/∂u2 + ∂2/∂v2.
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Let w = u+ iv; the last equation implies the existence of s : R2 → R3 such that the three
components of r + is are holomorphic functions of w. Put F = d(r + is)/dw; the Cauchy–
Riemann equations ru = sv, rv = −ru, together with (30), imply that the complex vector
F, with holomorphic components, is null, F2 = 0. Given such a vector-valued function,
one has the Weierstrass solution of the equation of a minimal surface,

r(u, v) = Re

∫ u+iv

0

F(w′)dw′ + r(0, 0). (31)

Paolo Budinich pointed out that there is a simple, spinorial form of the null vector
appearing in the Weierstrass solution (31). Namely, if ϕ : C → C2 is a spinor with
holomorphic components and σσσ = (σx, σy, σz), then one can write

F = 〈ϕ, iσyσσσϕ〉.

This equation may be obtained from Theorem 7 for n = 1. The papers by Budinich [3]
and by Budinich and Rigoli [4] contain also an extension of this result to minimal surfaces
in higher-dimensional Euclidean spaces and to strings Lorentzian spaces.

7. SPINORS IN GENERAL RELATIVITY

7.1. Almost Hermite and almost Robinson structures
Definition 4. An N-structure on a Riemannian manifold (M, g) of even dimension > 4,
is a complex vector subbundle N of the complexified tangent bundle C⊗ TM such that,
for every p ∈M , the fiber Np is mtn.

It is known that, if (M, g) is proper Riemannian, then an N -structure on M is equivalent
to that of an almost Hermite manifold; the orthogonal almost complex structure J on M
is defined as in (5) (see, e.g., Ch. IX §4 in [16]).

Definition 5. An almost Robinson manifold is a Lorentzian manifold with anN -structure.

In this case, the intersection N ∩ N̄ is the complexification of a line bundle K ⊂ TM ;
its fibers are null; they are tangent to a foliation of M by null curves. An almost Robinson
structure on M is said to be regular if the set M of the leaves of the foliation defined by
K has the structure of a manifold such that the natural map π : M →M is a submersion.
From now on, only such regular structures will be considered.

7.2. The integrability condition
Definition 6. The N -structure N → M on a Riemannian manifold (M, g) is said to be
integrable if

[SecN, SecN ] ⊂ SecN. (32)

In the proper Riemannian case, condition (32) is equivalent to the vanishing of the
Nijenhuis (torsion) tensor of the almost complex structure J and, by the celebrated
Newlander–Nirenberg theorem, it implies that M is a Hermite manifold; see Ch. IX
§2 and 4 in [16].

Definition 7. A Robinson manifold is an almost Robinson manifold with an integrable
N -structure.
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7.3. Four-dimensional Robinson manifolds: space-times with a non-distorting
foliation by null geodesics

The case of dimension 4 is well known, but, since it is also the most important one, it
is worth-while to review it briefly here. In this case, unlike as in higher dimensions, all
information about the Robinson structure is encoded in the properties of the bundle K. I
denote by k a nowhere zero section of K →M : this is a null vector field. The associated
1-form is κ = g(k).

Let (M, g) be a space- and time-oriented Robinson manifold of dimension 4 with the
bundle N →M of mtn spaces. The fibers of the bundle K⊥/K →M are two-dimensional
‘screen spaces’. Each screen space has a complex structure, which, in this case, is equiv-
alent to a conformal structure and an orientation; this being preserved by the flow is
equivalent to

L(k)g = ρg + κ⊗ ξ + ξ ⊗ κ (33)

for some function ρ and 1-form ξ. Physicists say that k generates a shear-free congruence
of null geodesics. The expression ‘shear-free’ reflects the non-distorting property property
of the flow: it preserves the conformal structure of the screen spaces.

‘Twisting’ congruences, characterized by dκ ∧ κ 6= 0, are more interesting; the Kerr
space-time, describing a black hole arising from the collapse of a rotating star, is a Robin-
son manifold with a twisting congruence.

Example. In Minkowski space-time, one of the first twisting shear-free congruences of
null lines was described by Robinson around 1963; it played a major role in the emergence
of Penrose’s twistors [22,23]. Robinson established that the metric tensor

g = (du+ i(zdz̄ − z̄dz))dv + (v2 + 1)dzdz̄, z = x+ iy (34)

is flat and the sng congruence generated by ∂v is twisting. The complex 2-form F =
A(x, y, u, v)κ∧(dx+idy) is self-dual and Maxwell’s equations dF = 0 reduce to ∂A/∂v = 0
and the equation ZydA = 0, where Z = ∂x + i∂y − i(x + iy)∂u is an operator on R3

introduced by Hans Lewy in 1957. He constructed a smooth function h such that the
equation ZydA = h has no solution, even locally.

Several solutions of Einstein’s equations admit this congruence: the Gödel universe, the
Taub–NUT solution and Hauser’s gravitational waves of type N [17].

7.4. The Goldberg–Sachs theorem
Consider a 4-manifold (M, g) that is either proper Riemannian or Lorentzian. An N -

structure on M can be (locally) given by a field ϕ of chiral spinors: one uses ‘point by
point’ the definition (14).

Theorem 9. (i) If the N-structure N(ϕ) is integrable, then the chiral spinor ϕ is an
eigenspinor of the Weyl tensor.
(ii) If (M, g) is conformal to an Einstein manifold, then N(ϕ) is integrable if, and only
if, the chiral spinor field ϕ is a repeated eigenspinor of the Weyl tensor.

For space-times, the theorem was established by Goldberg and Sachs [14]. Its extension
to the proper Riemannian case is due to Plebański, Hacyan, Przanowski and Broda [24,26].
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8. INSTEAD OF CONCLUDING REMARKS: WORDS OF THE MASTERS

The relativity theory is based on nothing but the idea of invariance and de-
velops from it the conception of tensors as a matter of necessity; and it is
rather disconcerting to find that apparently something has slipped through
the net, so that physical quantities exist, which it would be, to say the least,
very artificial and inconvenient to express as tensors.

C. G. Darwin, The wave equation of the electron

Proc. Roy. Soc. London, A 118 (1928) 654–680

It is interesting to note that the idea of a spinor can be based on that of a
vector, and conversely that the notion of a vector can be deduced from that of
a spinor; at least we can form from a pure spinor a null ν-vector (=self-dual
null multivector of the middle dimension AT ), then a general ν-vector can be
defined as the sum of null ν-vectors, and a vector as a common element of a
family of ν-vectors which satisfy certain conditions.

É. Cartan, The Theory of Spinors

Dover Publ., transl. by R. Streater

from the 1937 French edition

The orthogonal transformations are the automorphisms of Euclidean vector
space. Only with the spinors do we strike that level in the theory of its
representations on which Euclid himself, flourishing ruler and compass, so
deftly moves in the realm of geometric figures.

H. Weyl, The Classical Groups, Princeton U.P., 1946

Spinor calculus may be regarded as applying at a deeper level of structure
of space-time than that described by the standard world-tensor calculus. By
comparison, world-tensors are less refined, fail to make transparent some of
the subtler properties of space-time brought particularly to light by quantum
mechanics and, not least, make certain types of mathematical calculations
inordinately heavy.

...

Additionally, spinors seem to have profound links with complex numbers that
appear in quantum mechanics.

R. Penrose, Spinors and space-time vol. 1

Cambridge U. P. 1984
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[20] , Contributions mathématiques à la théorie des matrices de Dirac, Ann. Inst. H. Poincaré 6
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