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Informal review, mainly historical

Explain title: why optical?

What to call a vector k 6= 0 such that gµνkµkν = 0?

mathematicians: isotropic (only in dimension 2 null directions are iso-
tropic: they are preserved by rotations )

physicists: null (OK in English, but in many languages – such as French
– there is confusion: nul = zero)



Élie Cartan: optique (excellent: null vectors lie on the light cone, but
it did not catch on).

In a short paper of 1922 (no equations), Cartan wrote

...Il existe en chaque point quatre directions optiques (c’est-à-dire an-
nulant le ds2) privilégiées...Dans le cas du ds2 d’une seule masse attirante
(ds2 de Schwarzschild), ces quatre directions optiques privilégiées se rédu-
isent à deux (doubles)...

From that last sentence one sees that Cartan had the premonition of
the Petrov-Penrose classification of Weyl tensors.

There is also a vague remark about the parallel transport of optical
directions (shear-free property?)



Null (optical) electromagnetic field: f = (E,B) 6= 0

E ·B = 0 & E2 −B2 = 0⇔ ∃ optical k such that T µν = kµkν

Such an f is said to be associated with k; algebra: given null k there is
an associated f .

If Maxwell’s eqs satisfied, then div T = 0 implies k is geodetic (Mariot
1954). But the geodetic condition is not sufficient for the existence of
an optical solution of Maxwell’s eqs. (example: consider k for cylindrical
waves)



Ivor Robinson (in late 1950s presented at seminars in England, pu-
blished 1961) has shown:

there is a solution f 6= 0 of Maxwell’s eqs associated with an optical
k on a Lorentz mfld M iff k is geodetic and shear-free, i.e. the flow of k
preserves the conformal structure of the plane bundle

K⊥/K →M,

of ‘screen spaces’, where K ⊂ TM is the line bundle of null directions,
Kx = Rk(x).

This is expressed by: there exist function ρ and 1-form µ such that there
holds the Robinson equation (a weakened form of the Killing eq.):

L(k)g = ρg + 2λ.µ (Rob)



where λ = g(k) and L(k) is the Lie derivative in the direction of k.
(Notational convention: 2λ.µ = λ⊗ µ + µ⊗ λ.)

Call (M, g,K) an optical space-time if the Robinson eq. is satisfied
for a section k 6= 0 of the line bundle K of null directions.

Many early solutions of Einstein’s eqs, such as Schwarzschild (1916)
and conformally flat space-time have been recognized to be optical.

An early fundamental result is the Goldberg–Sachs theorem (1962):

An empty space-time is optical iff its Riemann tensor is algebraically
special i.e. there is k such that k[µRν]ρστk

ρkσ = 0.

More refined definition in terms of the spinor repr. of the Weyl tensor
ΨABCD = ϕ(AψBχCωD): type N, D, II, etc.



There have been doubts concerning the physical relevance of the optical
space-times: they constitute a very ‘small subset’ of the set of all solutions.
But

they occur in the asymptotic region (peeling off: Riemann tensor
R = N/r + III/r2 + ...)

there are surprising properties of the gyromagnetic ratio of the char-
ged solutions (Kerr-Newman, charged Taub-NUT...): double of the classi-
cal value; do they indicate connections between gravitation and quantum
mechanics?

there is the unexpected relevance of the Kerr metric as the generic
black hole



It is easy to construct k satisfying the Robinson condition in Minkowski
space.

The simplest: if ds2 = dt2−dx2−dy2−dz2, then λ = du, u = t− z
leads to the plane wave f = λ ∧ (a(u) dx + b(u) dy).

There are analogous plane(fronted) gravitational waves found by
H. W. Brinkmann already in 1925; rediscovered several times.

Einstein and Nathan Rosen around 1937 found the plane waves, in a
different coordinate system, inducing singularities in the components of the
metric tensor; interesting history of the attempt to publish the Einstein–
Rosen paper in Phys.Rev. (Kennefick 2005).



In 1936 and 1937 Leopold Infeld was with Einstein in Princeton and,
under his influence acquired conviction that gravitational radiation did not
exist. This had an influence on research in Warsaw in the years 1955-68.
At the suggestion of Jerzy Plebański, Andrzej Trautman was preparing his
Ph. D. thesis on gravitational waves. Rose Michalska–Trautman convinced
Infeld of the existence of grav. waves (joint paper, Ann. Physics 1969)

Another remarkable solution found by Kurt Gödel (1949); first ‘twi-
sting’: λ ∧ dλ 6= 0, global and homogeneous, with closed time-like world
lines.

In the 1950s there started research on optical solutions of Einstein’s
equations making explicit use of the conditions resulting from the Robinson
equation.

Robinson and Trautman (1960) non-twisting, expanding: div k 6= 0
(among them Schwarzschild and waves with spherical fronts; they have a



simple electromagnetic analog); R = N/r + III/r2 + D/r3 exactly.

Wolfgang Kundt (1961) non-twisting and non-expanding (among them
plane-fronted waves)

In 1962, at the GRG Conference in Poland, IR and AT gave the metric
tensor for a general twisting and shear-free k, but the first twisting solutions
of Einstein’s eqs were found by

Newman, Unti and Tamburino (NUT 1963; also found, from symmetry,
by A. H. Taub 1951)

Roy Kerr (1963)

Later: Plebański and Demiański (1976) essential generalization of NUT
and charged Kerr

There are several good reviews and a book by D. Kramer, H. Stephani,
M. MacCallum and E. Herlt (1980)



The Robinson optical, twisting congruence has been constructed
in Minkowski space: the metric

g = 2λdr − (r2 + 1)(dx2 + dy2),

where
λ = g(k) = du + xdy − y dx, k = ∂/∂r,

is flat, the null vector field k is optical, L(k)g = −2r(dx2 + dy2), and
twisting,

λ ∧ dλ = 2du ∧ dx ∧ dy 6= 0.

Let Φ = f − i ?f , then ?Φ = iΦ and Maxwell’s eqs are dΦ = 0. Put

Φ = A(x, y, r, u)λ ∧ (dx + i dy), then ? Φ = iΦ



and Maxwell’s eqs reduce to ∂A/∂r = 0 and Z(A) = 0, where

Z = ∂

∂x
+ i

∂

∂y
− i(x + i y) ∂

∂u

is a differential operator on R3 introduced by Hans Lewy (1957) who
showed, to the surprise of many mathematicians, that there are smooth
(of class C∞) functions h : R3 → C such that the differential equation

Z(f ) = h

has no solution, even locally, for f : R3 → C. (By the Cauchy-Kowalewski
theorem, there are such solutions if h is analytic.)

The Robinson congruence, generated by k = ∂/∂r played a role in
the development of twistors; those twisting congruences provided the
‘missing dimension’ in the space CP3 of projective twistors (5 dim are



provided by the set of null lines in Minkowski space); see Penrose on The
origins of twistor theory (1987).

In much of the work on solutions of Eintein’s eqs for optical space-
times there appeared, in a natural manner, complex numbers; this has
been recognized as an indication of the role played there by

Cauchy–Riemann structures

They appeared explicitly, for the first time in relativity, in the work of
Penrose (1983). The five-dimensional submanifold L of CP3,

L = {dirZ ∈ CP3 | |Z1|2+|Z2|2−|Z3|2−|Z4|2 = 0}, Z = (Z1, Z2, Z3, Z4) 6= 0,

has such a natural Cauchy–Riemann structure obtained by its embedding
in the complex manifold CP3. Penrose conjectured that manifolds with a
Cauchy–Riemann structure that cannot be so embedded may play a role
in a quantum theory of gravitation.



Observation (Warsaw group): provided suitable regularity conditions are
satisfied, with any optical space-time, there is an associated 3-dimensional
C-R manifold L (and conversely).

Sketch of proof: the set of curves defined by the flow φt of k is a
3-manifold L = M/φ.The bundle K⊥/K over M descends to a bundle

TL ⊃ H → L

with 2-dim. fibres that have a conformal structure. With a choice of orien-
tation on L, this conformal structure is equivalent to a complex structure
in the fibres: by definition, this is a Cauchy–Riemann structure on L. The
manifold L with H is as close to being a complex manifold as a 3-dim.
manifold can be. The form λ = g(k) on M descends to a form on L, also
denoted by λ and H = ker λ.



Method of constructing C-R spaces: embed 3-dim. manifold L in C2

and put H = TL ∩ C2 (but not all C–R spaces can be embedded; J.
Lewandowski, P. Nurowski and J. Tafel (1990) have shown that if the C-R
structure defines a solution of Einstein’s eqs, then it is embeddable)

The Robinson congruence is associated with a C-R structure on

S3 ⊂ C2

(the most symmetric such structure in 3 dimensions: its group of sym-
metries is SU(2, 1), as may be seen by projectivising the equation of the
sphere to |z1|2 + |z2|2 − |z3|2 = 0 .)



In the proper Riemannian case, so(4) = so(3)⊕ so(3), in the neutral,
so(2, 2) = sl(2) ⊕ sl(2) and in the complex case, the Riemann tensor
decomposes and one can impose conditions on its two components sepa-
rately. This has been done first by J. Plebański and I. Robinson (1976), and
extended by S.Hacyan, B. Broda, K. Rózga, M. Przanowski, P. Nurowski...
giving rise to research on ‘heavenly’ spaces and equations.

Analogous structures in other signatures and dimensions

Complex numbers provide links to other signatures.

Recall that a vector subspace W of a vector space (V, g) is said to be
totally null if every element of W is null; if W is complex 2n-dimensional,
then it has maximal totally null (mtn) subspaces that are n-dimensional.



Definition: A N -structure on a Riemannian manifold (M, g) of even di-
mension > 4 is a complex vector subbundle N of the complexified tangent
bundle C ⊗TM such that, for every x ∈M , the fiber Nx is mtn and the
following integrability condition is satisfied: let SecN be the vector space
of sections of the bundle N (its elements are vector fields), then

[SecN, SecN ] ⊂ SecN. (int)

If (M, g) is proper Riemannian, then anN -structure onM is equivalent
to that of an Hermite manifold; the orthogonal complex structure J on
M is defined as

J(v) = i v and J(v̄) = − i v̄ for v ∈ N.



If (M, g) is a space-time so that g has signature (1, 2n− 1),
n = 2, 3, . . . then

K = N ∩ N̄
is a real line bundle of null vectors and the integrability condition (int)
generalizes the Robinson equation (Rob).

Partial results on the Goldberg-Sachs theorem in > 6 dimensions obta-
ined by M. Ortaggio, V. Pravda and A. Pravdová (2013).



Summary

The study of congruences of shear-free null geodesics has led to large
classes of interesting solutions of Einstein’s equations such as Kerr’s and
gravitational waves.

The ‘optical’ space-time geometry underlying these solutions has inte-
resting links to Cauchy–Riemann spaces and the question of their embed-
dability in complex manifolds.

Optical, Lorentzian geometries are analogous to the Hermitean geome-
tries in proper Riemannian manifolds.


