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Foreword

In 1969, at the initiative of Witold Nowacki, then vice-President of the
Polish Academy of Sciences, there was organized a series of lectures on “The
Achievements of Polish Science”. After some time, to continue and extend
these conferences, an Open University of the Polish Academy of Sciences was
established. Within the framework of the first series of these conferences, one
of us (A. T.) gave a course of lectures entitled “The Relativity Theory”. The
text of these lectures was then extended by the other author (W. K.) and pub-
lished in 1971 by the Ossolineum. The interest with which this small book met,
encouraged us to prepare on its basis the present text. We kept in it—partly,
at least—the original, colloquial language of the lectures.

In this little book, we stress above all the conceptual side of the special
and general relativity theories. We pay much attention to the geometrical
aspects of this theory. This book can serve as a text for those who want to
learn the fundamentals of the special and general theories of relativity. It
does not, however, offer an exhaustive treatment of these theories. Therefore,
a reader who wishes to obtain a more profound knowledge of the theory of
relativity should also consult the literature listed at the end of the book.

We believe that this book should be accessible to readers who have had
a one-year course in mathematics and physics at the science depertments of
universities or at technical universities. We dedicate this book above all to

students.




CHAPTER 1

Introduction

The contemporary science of space, time and gravitation, commonly called
the relativity theory, emerged in 1905-1916. Although more than half a cen-
tury has passed since then, it is still met with considerable interest and even
fascination. What are the reasons for this. The first, probably the most im-
portant, reason is that the relativity theory is concerned with the fundamental
notions which we all come across and about which we all have certain ideas,
namely the notions of time and space. We should also consider, in this respect,
the personality of the founder of this theory: Einstein was an extraordinary
person, an eccentric with unusual behaviour; his life and character excite
human imagination and encourage us to take interest in his theory.

The very period of time, when relativity theory was created, also played
some role: those were the years when new technologies were being developed,
electric energy was coming into widespread use, the first aeroplanes appeared
and the radio epoch began. The technological achievements contributed to
convincing people about the significance of science even in everyday life.
At the same time, there were then not so many new inventions that it would
be impossible to stop and think about them. Now, scientific discoveries and
new technological advances are so frequent that something like the landing of
men on the Moon is required to excite wider interest in, and admiration for,
the work of engineers and scientists.

Certain factors, which we can call subjective, have also had their effect.
We mean by that the activity of popular science writers, quite often physi-
cists themselves, who set about with particular zeal to divulge, and at times
to vulgarize, the theory of relativity. Why did that happen? Probably be-
cause by speaking of relativity theory we can “astound the bourgeois”. We
have in mind here the possibility, which was quite frequently made use of,
to present the conclusions of relativity theory so as to impress on the lis-
teners the idea that all their previous notions of space and time were mistaken,
and that the true picture of the world is accessible only to a small group of the
initiated. This approach to the popularization of relativity theory, on the one
hand, resulted in creating a vivid interest and numerous discussions of the
subject; on the other, it led to the situation that even today we meet people
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who reject the whole of Einstein’s theory and try to turn physics back to the
pre-relativistic period.

In the initial period of its history, the theory of relativity was particularly
susceptible to popularization, since the experimental material which con-
firmed it, was rather scarce and could be described in a way accessible to a lay-
man. It was then sufficient to discuss the Michelson-Morley and Trouton—
Noble experiments. Clearly, things have now changed and there are many
direct and indirect precise tests of the special relativity theory; but there
is no universal awareness of the new situation. Many people still believe that
relativity theory is beyond a layman’s comprehension, its results are para-
doxical, while only measurements of the speed of light provide the experimen-
tal basis.

We shall not be concerned here with such formulations as: according to
FEinstein everything is relative, time is imaginary and matter can transform
into energy. These apparent wisdoms have emerged on the margin of science
and have nothing in common with what is asserted in relativity theory under-
stood as part of physics.

We shall discuss instead the geometry of the different models of time and
space, paying attention to similarities and differences between Newtonian
and Einsteinian models [51, 52, 53]. We shall pay much attention to problems
which find their way into popular discourses and are quite frequently repre-
sented incorrectly. What we mean is, e.g. the “twin paradox”, the problem
of visibility of the relativistic length contraction [23] and the question of the
existence of motions faster than light.

Despite what has at times been said on the subject, we should not consider
the special theory of relativity as being the creation of Einstein alone, inde-
pendent of the development of physics at the turn of the 19th and 20th cen-
turies. The emergence of this theory was made possible by the developments
in electrodynamics, while its germs could be found in the work of Lorentz,
Fitzgerald, Larmor and Poincaré. Of the earlier discoveries, without which we
could not think of relativity theory at all, we should mention the first attempt
at evaluating the speed of light made by the Danish astronomer Olaf Romer -
in about 1675. Observing the motion of one of Jupiter’s moons, Romer cal-
culated the period of its motion and then found that at a moment when the
Earth was farther away from Jupiter, the eclipse occurred more than 10 min-
utes later than he had predicted from observations of eclipses when the Earth
was closer to Jupiter. Hence, he drew the conclusion that light propagated
at a finite speed. Since he did not know the exact dimensions of the Earth’s
orbit, he underestimated this speed. If one were to use the parameters of the
Earth’s orbit determined later, Romer’s calculations would give a speed of
light of 310 000 km/sec, an outstandingly precise result.

Of importance was the discovery in 1728 by Bradley of the phenomenon
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of aberration. The phenomenon consists of the apparent displacement of
fixed stars during the Earth’s motion around the Sun. In contrast to the paral-
lactic displacements of stars, caused by changes in the direction from which
we observe stars, brought about by changes in the Earth’s position, aberration
is related to changes in the Earth’s velocity; it resembles the phenomenon of
the formation of oblique rain drops on the window panes of a travelling train.
In 1804, T. Young explained the phenomenon of aberration on the ground
of the wave theory of light, assuming that light consists of the propagation of
vibrations in a stationary ether. If, however, the Earth and bodies lying on
it move with respect to the ether, then the light refraction coefficient, and,
accordingly, the focal length of a lens, should depend on whether the lens is
moving towards the light source (star) or away from it. D. Arago’s (1818)
observations did not exhibit this phenomenon, and, although, they were prob-
ably not accurate enough to settle the case, they encouraged A. Fresnel
to look for a theoretical explanation. Fresnel found it in the idea of “partial
dragging of the ether”. According to this idea, the ether within bodies (e.g.
within the glass of which the lens is made) is “dragged” by these bodies at
a velocity (1—1/n?) ¥, where ¥ denotes the velocity of the body with respect
to the ether and » is the refractive index. We can show that from Fresnel’s
hypothesis it follows that all the light propagation phenomena do not depend
on the motion of the medium with an accuracy up to terms of the order of
V/c. The possible differences are of the order of ¥2/c?; for the motion of the
Earth around the Sun this ratio is about 10-8, In 1881, A. A. Michelson
carried out, for the first time, measurements intended to identify the Earth’s
motion with respect to the ether, taking into account effects of the order of
V2/c*. Later, Michelson and Morley repeated the measurements. The latter,
as we shall describe in greater detail in Chapter 4, gave negative results: it
proved impossible to determine the Earth’s motion with respect to the ether [34].

At the end of the 19th century, purely theoretical work was also done on
the problem of light propagation and electrodynamics in moving media. It
was then known that the wave equation

P 1 ¢ 0
ax* ¢ ar?

is invariant with respect to Galilean transformations. Voigt [56] was the first
to note in 1887 that this equation was invariant with respect to the transform-
ation

x' = x-Vt,
t" = t—Vx/c?,

containing the “local time” ¢, but without the relativistic square root J/ 1 —V2/ 2.
The latter appeared in 1892 in connection with a hypothesis proposed at that
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time by Lorentz [33] and Fitzgerald. According to their hypothesis bodies
moving at a velocity V with respect to the ether were contracted in the di-
rection of motion in the ratio of 1/ 1—¥?2/c?:1. This hypothesis explained
the results of interferometric measurements by Michelson and Morley. In
1900, Larmor [33] gave formulae which are called Lorentz transformations
while Lorentz himself demonstrated in 1903 the invariance of Maxwell’s vac-
wum equations with respect to these transformations.

H. Poincaré was a true precursor of Einstein’s theory. As early as 1895,
he anticipated the relativity principle by writing that “experiments yield many
facts which may be generalized in the following way: we cannot identify the
absolute motion of matter with respect to the ether. We can only observe the
motion of ponderable matter with respect to ponderable matter” [43]. In
his later works, Poincaré criticized the notion of absolute time, formulated
more precisely the relativity principle and tried to modify the law of uni-
versal attraction so that it would agree with the principle of the finite speed
of propagation of interactions.

The 1905 paper by Einstein (Zur Elektrodynamik bewegter Kirper, Ann.
der Physik, 17, 891 (1905)), who wrote it without knowledge of the 1903 work
by Lorentz and the results of the experiments by Michelson and Morley,
contained a novel, profound formulation of the relativity principle concern-
ing electromagnetic phenomena. This paper has correctly been considered
a turning point in the development of the special theory of relativity. Einstein’s
significant contribution was to complement the relativity principle with the
principle of the independence of the velocity of light on the motion of the
source. It turned out that the combination of these two simple principles led
to a revision of the notion of time. From these principles Einstein was able
to derive Lorentz’s transformations directly; his predecessors had obtained
them by considering transformations which did not change the form of
Maxwell’s equations. Einstein was the first to foresee the time dilation. In
another paper in 1905, Einstein gave the relation between mass and energy,
which was later popularized as the formula E = mc?.

Minkowski’s work [36], containing a geometrical, four-dimensional for-
mulation of time and space and of Lorentz transformations, played an im-
portant role in the development of relativity theory. Shortly after having
formulated the special theory, Einstein became interested in the problem of
building a relativistic theory of gravitational phenomena. As early as 1507,
observing that a uniform gravitational field is equivalent to the forces ap-
pearing in a system in uniformly accelerated, translatory motion, Einstein pro-
posed that the relativity principle be extended to noninertial reference systems.
Generalizing this observation and formulating the principle of equivalence
between gravitational fields and inertial forces, Einstein predicted two phe-
nomena: a change in the wavelength and the deflection of rays of light
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propagating in a gravitational field. Hence, it followed immediately that the
special relativity theory could be valid only in the absence of gravitation. The
phenomenon of the deflection of light rays suggested that the speed of light
depended on the distribution of masses. Einstein’s first theory of gravita-
tion (1912) [11], also developed by Abraham [1], assumed that the speed of
light was a position-dependent “gravitational potential” satisfying an appro-
priate field equation. At the same time, Nordstrém [36] proposed a rela-
tivistic theory of gravitation, also based on a scalar potential, but without
the phenomenon of light deflection. Despite the fact that this phenomenon
had not yet been confirmed, Einstein did not recognize any of those theories
as satisfactory, because they did not treat on the same footing all the nonin-
ertial reference systems: they were not generally covariant. It became possible
to satisfy the postulate of general covariance by introducing in 1913 the full
metric tensor as a gravitational potential. Subsequent years were devoted
to the search for the gravitational field equations; we shall say more about
that in Chapter 11. In 1916 there appeared the paper [16] containing the final
formulation of the Einsteinian, relativistic theory of gravitation. The follow-
ing years brought its further development and confirmation. Already in
1916, there appeared Einstein’s paper [17] devoted to an approximate method
of solving the field equations and to gravitational waves, while Schwarzschild
[48] found an exact solution of the field equations which now bears his name.
Much attention and work was then devoted to the problems of gravitational
energy and general covariance. In 1917 Einstein published a paper on cos-
mology [18], where he complemented the field equations with a “cosmo-
logical term”, describing the hypothetical forces, sometimes presumed to
occur, between distant astronomical objects. The modified field equations
admitted a static model of the Universe, where the space (¢ = const) was
a three-dimensional sphere with a radius proportional to the total mass of
the Universe. In the 1920’s, the expansion of the Universe (recession of the
galaxies) was discovered, and in 1922 Friedmann [22] found a solution to
Einstein’s equations for the Universe involving expansion, without having
to introduce the cosmological term.

Beginning with 1921, Einstein paid much attention to building a unified,
geometrical theory of gravitation and electromagnetism. Research on this
subject, initiated by Weyl [59] and Kaluza [30], did not achieve its aim, but
it contributed to an understanding of the mathematical structure of field theory
and to the development of the idea of geometrization of physics in connection
with the theory of gauge fields.

The paper by Einstein and Grommer [19] which appeared in 1927 was de-
voted to the problem of the motion of bodies in the theory of gravitation.
It turned out that, in contradistinction to other theories, in the relativistic
theory of gravitation one could not postulate independently the field equations
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and the equations of motion of its sources; the latter were consequences of
the former. The subject of the equations of motion was studied later again
by Einstein, Infeld and Hoffmann. The fundamental work by these authors [21]
contained the formulation of a new method for approximate and gradual
solution of the field equations and for finding the motion. It is now known
under the name of the ETH method. Independetly of Einstein, a similar method
was developed by V. A. Fock and his students. Infeld and his collaborators
carried out extensive research on the problem of motion in general relativity
theory. It was summed up in a monograph [27] by Infeld and Plebanski.

In the middle of the 1930’s Einstein and Rosen attempted to find exact wave
solutions of the gravitational field equations [20]. They both concluded that
plane waves with a finite amplitude led to singularities in the geometry of
spacetime. They found, however, physically satisfactory cylindrical waves.
The paper by Einstein and Rosen initiated the development of extensive
research on exact solutions of the gravitational field equations and the geometry
of gravitational waves. Bondi, Pirani and Robinson [3], and other researchers,
independently of the former, discovered the existence of exact, nonsingular
plane gravitational waves. It appeared that the singularities encountered by
FEinstein and Rosen were in fact caused by the choice of the coordinate system
and had thus no geometrical significance; R. Penrose explained the physical
reasons for the occurrence of these apparent singularities. They were related
to the fact that a plane wave acts as an ideal astigmatic lens. Light rays and
particles going through such a lens are deflected. Particles moving parallel
to each other before they come across the wave acquire convergent or di-
vergent trajectories after crossing the wave; their world lines can intersect.
This prevents the construction of the coordinate system proposed by Einstein
and Rosen throughout the spacetime containing a plane gravitational wave.

By generalizing the properties of plane waves and using the methods de-
veloped in the course of analyzing them, it was possible to find large classes
of solutions of Einstein’s equations. It appeared that plane waves were im-
portant examples of so-called algebraically special solutions, according to the
classification of gravitational fields initiated by Petrov [41]. An analysis of
algebraically special fields led to the discovery of simple outgoing waves and
of the Kerr metric describing the gravitational field and the geometry outside
a rotating “black hole”.

The middle 1950’s witnessed the beginning of an intensive development
of theoretical and experimental research in the field of gravitation. On the
theoretical side, we should mention the numerous attempts to “quantize”
the gravitational field, i.e. to build a microscopic theory of gravitational-
interactions, by analogy with quantum electrodynamics. It seems that this
problem has not been solved yet and that it is one of the most difficult prob-
lems of theoretical physics. Much attention has been paid to waves and gravi-
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tational radiation; numerous approximate methods have been elaborated
for calculating the magnitude of radiated energy and of the effect of gravi-
tational waves on the motion of bodies. Of particular interest is the research
done on “black holes”, their thermodynamical properties, and the phenom-
enon of creation of particle pairs by the strong gravitational field near
black holes (the Hawking effect). Due to the studies of Hawking, Geroch
and Penrose [24], it became clear that the reason for singularities occurring
in the Friedmann cosmological models resided deep in the structure of Ein-
stein’s theory, rather than, as had previously been believed, in the high sym-
metry of these models. Papers published on the subject by E. M. Lifshitz,
I. M. Khalatnikov and V. A. Belinsky played a major role. In connection
with the problem of singularities, and also under the influence of the devel-
opment of geometrical methods and gauge field theory, physicists have re-
cently begun to analyze various versions of the relativistic theory of gravita-
tion, ; most of them are slight modifications of the Einstein theory. For example,
the Einstein—Cartan theory allows torsion in spacetime and connects it with
the spin of matter. In theories initiated by Chen Ning Yang, one considers
Lagrange functions which are quadratic functions of curvature and torsion,
in contrast to the Einstein theory, based on a linear Lagrange function. The
boldest modification of Einstein’s theory was the recently proposed theory
of “supergravitation”, where to describe gravitational interactions, physicists
introduced an additional anticommuting field of particles with mass 0 and
spin 3/2.

Of the experimental and observational works of the last two decades, it
Is interesting to note the measurements of changes in the length of electro-
magnetic waves in the Earth’s gravitational field (Pound and Rebka, Jr. [44])
and the discovery of residual microwave radiation at a temperature of 2.7 K.
(Penzias and Wilson [40], P. H. Dicke). This radiation, interpreted as a rem-
nant of the hot development period of the Universe, is emphatic evidence for
the Friedmann cosmological models. The discovery of residual radiation
contributed to the fact that most experts abandoned the static model of the
Universe, a model which enjoyed large popularity in the 1950s.

The development of radioastronomy and the technology for investigating
outer space also provided other tests for the general theory of relativity.
It proved possible to measure quite accurately the deflection and delay of
electromagnetic waves in the Sun’s gravitational field. The results of these
measurements agree with the predictions of the Einstein theory, and they
refute the Brans and Dicke theory, assuming that the general gravitational
field should be described by means of a metric tensor complemented with
a scalar field related to the gravitational “constant”, which in this theory has
no constant value. A count of distant radiogalaxies confirms Friedmann evol-
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utionary cosmological models. We can draw a similar conclusion from an
analysis of helium content in the Universe.

Much effort has been put into attempts to discover gravitational waves
which are probably incident on the Earth from space. Particular hopes were
connected with research by Weber [57], who initiated experimental studies
in the field of gravitational radiation, building the first “gravitational antenna”
in the form of an aluminium cylinder, equipped with sensitive piezoelectric
detectors. Observations repeated by a few independent research teams have
not confirmed Weber’s first, opitimistic findings. The sensitivity of the an-
tennae and detectors used until now is not sufficient to detect the gravitational
radiation generated by double stars and supernova explosions in adjacent
galaxies. Beginning his experiments, Weber hoped that previously unknown
sources of gravitational radiation existed, with much greater intensities. It
turned out, however, that it is necessary to improve the sensitivity of gravi-
tational antennae by a few orders of magnitude in order to be able to detect
on Earth the gravitational radiation from outer space. Current research in
this direction is based on the use of antennae in the form of crystals with
high quality factors and low temperatures, so as to ¢liminate the interference
of thermal noise.




CHAPTER 2

Physmal Phenomena, Models,
Theories

We shall now consider the relation of the theory of relativity to other
physical theories. Any discussion of the interrelationship between the differ-
ent branches of physics is complicated by the fact that the way the discipline
has been “pigeon-holed” in the course of its historical development does not
fully agree with the present state of knowledge. Traditionally, we deal with
areas such as mechanics, thermodynamics, electromagnetism, optics, ele-
mentary particle physics, solid state physics, theory of relativity, etc. Physi-
cists are perfectly aware of the fact that these theories are only seemingly
independent and that the division is inadequate.

To think sensibly about relationships between different physical theories
and about a more appropriate, deeper division of physics, one has to get to the -
bottom of things and ask about the subject of physical studies. Without
pretence to ostensibly learned definitions, it can be said that physics selects
for study those natural phenomena which are relatively simple and for which
it is possible to distinguish a few basic, characteristic quantities and name
a few controlling factors. A no less important criterion is the repeatability
of a phenomenon: physicists only study repeatable phenomena, which can be
realized arbitrarily many times.

Because physicists restrict themselves to simple phenomena, they can model
them. It is this modelling that is the basic element of the physicist’s cognitive
endeavour. Realizing this fact is essential to understanding what physical
theories are and what are relations between them. We shall illustrate the
phenomenon-model relationship on a few examples [28].

Consider the flight of a cannon-ball or, in other words, the motion of a
projectile near the Earth’s surface. In this phenomenon (in the common sense
of the word) we can distinguish at least three physical phenomena, or groups
of such:

(1) the motion of a body in a gravitational field;

(2) aerodynamic phenomena, including acoustic phenomena;

(3) thermal phenomena.

We shall concentrate solely on the mechanical aspects of the problem, i.e.
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on the projectile motion in the narrow sense. As is well known, two factors
controlling the motion can then be distinguished, namely, the initial velocity
and projection angle, and gravity. If we neglect air-resistance, which can be
done within a certain range of velocity and under certain assumptions con- '
cerning the mass, shape and size of the projectile, then neither the mass, shape
nor size will have any effect on the motion. In general, finding what is signifi-
cant in a given phenomenon is not easy and requires ingenuity and intuition
on the part of the physicist. After the factors controlling the motion are as-
serted, it is possible, e.g. by photographic methods, to investigate the path of the
cannon-ball and its progress in time (Fig. 2.1). Next, a mathematical law is

7 i

Fig. 2.1

developed to serve as the basis of a mathematical model of the phenomenon.
As we know, the law has the form m¥ = mg, and all that can be said about the
motion of the projectile is contained in this differential equation. If we wanted
to include the effect of friction, all we would have to do would be to
change the form of the equation a little, namely, to add a friction term to
its right-hand side. Of course, before the equation is set down, we have to
state that we are dealing with Euclidean space, in which the curves satisfying
the equation are to be considered. The curves together with their parametri-
zation describe both the path and the progress in time of the projectile. In this
way we have a mathematical model of the phenomenon of projectile motion.

The next step was made by Newton, who discovered that the falling of
bodies to Earth has the same cause as the motion of planets about the Sun
or that of the Moon about the Earth. He then formulated a mathematical
law which described all those phenomena: the law of universal gravity. Since
it describes a wide class of phenomena, we say that we are dealing with a theory.
The dividing line between a theory and a model is not clearly marked. Gen-
erally speaking, a model appliesto a single phenomenon or to a group of simi-
lar phenomena, while a theory usually provides models for a wide range of
phenomena, often seemingly disparate.

Our next, a little less trivial, example will concern the hydrogen atom.
Historically, the first model of a hydrogen atom was that of Thomson, who
represented the atom as a sphere of positively charged fluid, with a negatively
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charged point electron moving within it. The second was Bohr’s planetary
model. In this, we have a positively charged point nucleus and an electron
moving about it in an ellipse according to the laws of classical mechanics
(Fig. 2.2). To these laws, which follow from the principles of classical mechan-

Fig. 2.2

ics, Bohr added the so-called quantum conditions, which say that the mo-
mentum of the electron, and its action, may only assume certain defined
values.

Schrodinger’s model, developed within the framework of a more general
physical theory—quantum mechanics, came next. This model is entirely differ-
ent from the previous two. The fundamental notion in it is that of Hilbert
space, in which a certain Hermitian operator (Hamiltonian) is distinguished.
The eigenvalues of this operator define the energy states of the hydrogen atom,
and consequently the frequency of the light emitted by the atom. The eigen-
vectors of the Hamiltonian also have a physical interpretation: they provide:
complete information about the motion of the electron.

Historically, the next was Dirac’s model, which drew on the concepts of
relativistic quantum mechanics. In fact, it differs little from Schrodinger’s
model. There is some difference in the Hilbert space, and the form of the
Hermitian operator is in accordance with special relativity theory.

In this way we have four (although there are more than that) mathematical
models of the phenomena that make up a hydrogen atom, or—in short—four
models of the hydrogen atom. The first two models are demonstrable, which
cannot be said about the other two. By “demonstrable” we mean that the
material points—and hence abstract mathematical objects—that we talk about
in the first two models correspond to physical objects: a nucleus and an elec-
- tron, and imagining this presents litle difficulty. Indeed, we go as far as to
draw graphs of the functions obtained by solving equations of these models
and consider them to be the pictures of the hydrogen atom. The situation in
the Hilbert-space based quantum models is entirely different: they are subject
to the uncertainty principle, which does not allow a definite position and mo-
mentum to be associated simultaneously with a given particle.

Quantum mechanics caused a much greater upheaval in the structure of
physical theories than the theory of relativity. If a relativistic, but non-quantum,
model of an atom were created, it would be as demonstrable as Boht’s model.
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Dirac’s model, on the other hand, is as non-demonstrable as Schrodinger’s.
The loss of demonstrability occurs in passing from non-quantum to quantum
models, while no such loss exists between non-relativistic and relativistic
models. In building a model of a physical phenomenon, we have to determine
the following correspondence:

MODEL WORLD
Results of calculations Results of measurements
Mathematical quantities Observed physical
in the model quantities

We must be able to answer the following question: which of the mathemat-
ical quantities that appear in the model correspond to the observed physical
quantities, and more precisely, which of the calculated values correspond to
the various measured values, and in what way? When we deal with classical
models, this is quite easy.

In the case of projectile motion, for example, we have the differential
equation ¥ = g, which can be solved subject to some defined initial conditions.
As a result we obtain certain functions of the variable z. Now if we want to
give the position of the cannon-ball at some instant of time, we need to find
the values of these functions for an appropriate value of the parameter ¢,
which is interpreted as time. These values will determine the position (distance)
of the ball with respect to a suitable frame of reference. The way the solutions
of our differential equation should be related to the measurements of the
actual position by means of measures, theodolites, photographic pictures,
etc., can be prescribed very precisely. The same can be done for quantum
models, although, owing to the loss of demonstrability, the problem is not
as simple as before. By applying certain mathematical operations to the el-
ements of the Hilbert space, we obtain numbers which can be compared with
the results of the experiment. In this case, however, the prescription is not
as obvious as in classical mechanics. Likewise, in the theory of relativity, the
correspondence between the mathematical objects and that which is measured
is not quite straightforward. Not everyone is aware of this, and a good many
misunderstandings result. This remark applies to the “twin paradox” (the
clock paradox), among others.

Having spoken of physical phenomena, of models and theories, we can give
a diagram illustrating the cognitive method of physics:

SRR
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Mathematics

|

Phenomena Description Mathematical models Physical theories

. e

Prediction of new phenomena

lgbsewohon and experiment}

—— N

~ Phenomena Phenomena consistent
inconsistent with with predictions
predictions (confirmation of theory)

Experiment plays a fundamental role in the development of physics. In
experimental work, physicists seldom follow any specific models; however,
they use them for guidance in their choice and planning of experiments and
observations. The description of a physical phenomenon, involving both
qualitative and quantitative elements, can be treated as the first step towards
its explanation. Then, by analysing the description, we construct a mathemat-
ical model. Usually such a model describes that single phenomenon or a group
of similar phenomena. The next step is the development of a physical theory.

The task of a physical theory is to supply models for a wide class of phe-
nomena; often these phenomena will appear to have very litle in common.
We mentioned previously the theory of universal gravity, which provides
models for both the projectile motion near the Earth’s surface and the motion
of planets about the Sun.

Usually it so happens that a theory permits us to describe more phenomena
than were taken into account when it was developed. Whether or not new
phenomena can be described by means of a given theory is often a criterion
for accepting or rejecting it. A good example is furnished by the so-called older
quantum theory, which was developed on the basis of Bohr’s model of the
hydrogen atom and which could only explain a very limited range of atom-re-
lated phenomena, and even these required additional assumptions. In the
sense of what has been said so far, it is even difficult to speak of the older
quantum theory as of a theory; it should rather be looked upon as a few models
having certain properties in common.

Returning to Newton’s theory of gravity, it is worth recalling that it pro-
duced models of phenomena that had not been considered at the time it was
created. For example, it was capable of explaining ocean tides. If, basing
ourselves on a theory, we predict a phenomenon, then we have to get back to
the starting point, that is to experiment, to find out whether the model put
forward by the theory describes that phenomenon satisfactorily. If not, we
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should analyse in detail the phenomenon that is inconsistent with the theory
and try to give an appropriate mathematical model for it. This model must
then be taken into account in the search for a new theory which would be ca-
pable of describing a greater range of phenomena, including both those con-
sistent and those inconsistent with the predictions of the original theory.

In what sense do models of physical phenomena have the character of
mathematical models? In many cases—Iliterally. For example, the differential
equation which models projectile motion is a fragment of the theory of differ-
ential equations. We can say with full precision all about the methods of
solving this equation and about the properties of its solution. If we leave
aside (which we should not) the very important part of any physical theory,
namely the determination of the correspondence between the mathematical
quantities and the results of measurements, then many physical theories will
be reduced to a piece of mathematics. Thus, practically the whole of classical
mechanics becomes a chapter of the theory of ordinary differential equations.
The situation is similar with classical electrodynamics: if the existence of point
charges is neglected and only continuously distributed matter is considered,
then the entire Maxwell theory becomes a section of the theory of partial
differential equations.

Often, however, physicists do not restrict models of physical phenomena
to the existing mathematics but create something which they hope may event-
ually become a mathematical model. An example of this is Dirac’s o function.
It was introduced by physicists even though everybody with any knowledge
of the theory of integral could easily prove that such functions did not exist.
Physicists used that not very precise concept for more than twenty years be-
fore mathematicians created the theory of distributions, which explained what
really those “functions” meant, thereby sanctioning their use.

Another, more recent example are the generalized Hilbert spaces. It turned
out that in some problems of quantum mechanics ordinary Hilbert spaces
were no longer sufficient as, for example, it proved convenient to speak of
vectors of infinite length even though no such vectors existed in Hilbert
spaces. Today, no contradiction exists here either, for appropriate mathematics
has been developed which legitimizes the use of these concepts (Gelfand’s
triplets, bristling Hilbert spaces).

There are still models at the present time, or should we more accurately
call them outlines of models, the formulation of which as strict mathematical
models remains an open question. We have in mind quantum field theory in
the form in which physicists use it for interacting fields. Certain assumptions
which are made in this model are known to be contradictory. Quantum field
theory produces results comparable with observations by using approximate
calculations in which an essential part is played by renormalization. This
process involves eliminating divergent quantities (“infinities”) that appear
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in every such theory, for example in quantum electrodynamics. It is not clear
whether this outline of a model, known as quantum field theory, can ever
be presented in a completely satisfactory logical form, as was possible with
Dirac’s ¢ function. This question is at present among the most important
problems of theoretical physics.

Physicists hardly ever mention the fact that most of their work is con-
cerned with models. Usually, we say: “consider a hydrogen atom according
to quantum mechanics”, which suggests that we are really considering an
atom of hydrogen. What we do consider in fact is a mathematical model of
a hydrogen atom proposed by quantum mechanics, hence a creation of human
mind. Why does not anybody put it this way? Firstly, because leaving out
the expression “mathematical model” is convenient and, although imprecise,
in general it does not lead to mistakes. Secondly, it is more pleasant to en-
tertain the illusion that we are dealing directly with the objective reality and
not only its mathematical models. Physicists, of course, are full of best in~-
tentions and want to speak about that reality, but the only reasonable way,
it seems, is to construct models.

It is worth realizing, however, that theoretical physicists deal primarily
with models. Sometimes this fact does lead to misunderstandings. For example,
one often hears the question: does gravitational radiation exist? An un-
reasonable answer is sometimes given: why, Einstein has long proved that,
so why should physicists keep on trying to detect this radiation experimen-~
tally. Such an answer is, of course, a misapprehension. Einstein investigated
gravitational radiation within a model proposed by his own theory. Certain
solutions of the equations of gravitational field turned out to be similar to
some of the solutions of Maxwell’s equations, which, as is well known from
experiments, describe electromagnetic waves. There is no certainty, however,
whether Einstein’s model of gravitational field is fully adequate, and par-
ticularly, whether it is true in the part dealing with gravitational radiation.
Naturally, if a theory describes many different phenomena well, we tend to
believe that other predictions of that theory will also be confirmed experi-
mentally; but this does not have to be so.

It now becomes clear what is meant by saying that a physical theory can
be admitted to be true or false. Sometimes we read or hear a statement that
someone refuted a theory, for example that Einstein refuted Newton’s theory.
If we accept that the main substance of a physical theory are models which
describe the reality only approximately, then the above statement does not
make much sense. At best, we can produce new models which will describe the
phenomena concerned better than existing models. This is exactly the case
with Einstein’s theory: models proposed by it were more accurate than those
proposed by Newton, but saying that Einstein refuted Newton’s theory is not
correct. Newtonian models continue to be applied and there is no indication
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that they may cease to be applied. This is so because they give good descrip-
tion of phenomena within a certain range of velocities, namely under velocities
small compared with the velocity of light.

It sometimes happens that there are two competing models aspiring to
describe the same range of phenomena and in the same approximation, and
one of them appears to give results consistent with observations while the other
does not. Then, we are inclined to state that the first model is good and the
second is bad, and perhaps even reject the second model out of hand. Cases
like this, however, are rather rare. Much more often we have the situation
where a number of models fit the reality, but each for a somewhat different
range of phenomena. We may then try to improve on these models, i.e. to
replace them by new models which have a wider range of applicability.

There is hardly a physicist nowadays who considers the existing theories
to be final. This statement applies particularly to quantum mechanics and the
theory of relativity. No one now thinks that these theories are the last word.
It seems certain, however, that there is no way back. Everybody is convinced
that physics will not develop in a direction where we would have to discard
quantum mechanics and turn towards classical models. This is impossible
simply because classical models have a limited range of applicability in com-
parison with quantum models. A similar remark can be made about the
theory of relativity. But then nobody says that this theory will never be im-
proved or replaced by a broader, more exact, more general theory. '

In what other, more correct, way could we divide physics? The division
can be made with regard to different aspects of the investigated phenomena.
The first division that comes to mind is one with respect to the fundamental
interactions that occur in the physical phenomena. At present we distinguish
the following kinds of actions, or forces: ‘

gravitational, ‘

electromagnetic,
weak,

nuclear {
strong.

We have listed these forces in the order in which they were discovered. Gravi-
tational and electromagnetic forces are believed by the majority of physicists
to have been well investigated and understood. Our knowledge of nuclear
forces is still far from adequate. There is no satisfactory theory capable of
describing a sufficiently wide range of phenomena involving these forces.
Indeed, it is possible that the above classification of nuclear forces is not
appropriate.

Naturally, it almost never happens that forces of only one kind are presenf
in a phenomenon. It is usually possible, however, to distinguish one domi-
nant type and often all other interactions can then be disregarded. For
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example, in considering the motion of the planets about the Sun we find that
it'is dominated by gravitational phenomena and that the contribution to it
from all other forces is negligible. Likewise, where the structure of an atom is
concerned, the dominant part is played by electromagnetic forces; gravitational
interactions between the nucleus and the electrons are some 104° times weaker
than the electromagnetic ones.

The second division of phenomena refers to their scale, to the number of -
elementary components involved. We can consider phenomena on a scale of
the micro-world, i.e. that of single elementary particles: photons, electrons,
nucleons and all others that have been discovered in the last 40 years. We
¢an study atomic nuclei, atoms, ions and molecules. We can also consider
matter on a macroscale, e.g. this book as a material object, which consists
approximately of 10%* different molecules. Then we can look at matter on an
astronomical scale, thus at planets, stars, stellar constellations. Finally, we
can ponder on the Universe as a whole. Appropriate to each of these scales,
separate theories are developed.

It is generally believed that the theories relating to the phenomena of
the microworld, and hence those describing single elementary systems, are the
most fundamental. It is thought that it should be possible to derive the theories
describing macroscopic phenomena from the microscopic theory by allowing
for the large number of particles that take part in those phenomena.

The third division, rather less significant than the previous two, concerns
the velocity of the motions involved. It appears that the velocity of light, c,
is the critical one, with which all other velocities should be compared. Phe-
nomena involving motions with velocities much lower than the velocity of
light can be described within the framework of Newtonian models, while
those with velocities significant compared to ¢ require the use of the theory
of relativity. Relativistic descriptions of low-velocity phenomena differ very
little from Newtonian descriptions, which is why Newton’s theory is often
spoken of as a limiting case of the theory of relativity.

Finally the fourth division, related to the second, is concerned with the
applicability of classical and quantum methods. In practically all situations
in which we deal with single objects of the microworld we have to use the laws
of quantum mechanics. When we describe systems composed of a large number
of such objects, we can in most cases apply classical theories. Quantum laws
are more general; by a suitable limiting process we obtain from them the classi-
cal laws.,

The above divisions are not quite independent. For example, the phenom-
enon of electromagnetic radiation is by its very nature relativistic, because
electromagnetic disturbances propagate at the velocity of light. It follows
that the most exact theory of phenomena involving individual photons is both
quantum-based and relativistic. It is quantum electrodynamics. Developed
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in the 1930’s this theory now offers the most precise quantitative verifications
of the theory of relativity. Indeed, a frequent error of those who try to chal-
lenge the theory of relativity is that they forget how rich and precise the pre-
dictions are of relativistic quantum electrodynamics.

Consider as an example one of the results of quantum electrodynamics:
the formula which gives the energy states of the hydrogen atom.
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The following notation is used:

m—electron mass,

e—electron charge,

h—Planck constant,

a = e*[/hc—{fine structure constant (« ~ 1/137),

e—mean excitation energy of state al.
The indices #, j and / number the different states; » and / take integer values,
n=1223.,l=—n —n+l,...,n—~1, n; for a given /, the index j assumes
one of the two values j = I4+1/2 or j = [-1/2. The magnitude of the suc-
cessive terms inside the brackets depends above all on the power in which the
fine-structure constant o occurs. The further, dotted terms, which involve
higher powers of «, are much smaller. The second term in brackets was ob-
tained in Dirac’s theory, the third in quantum electrodynamics, and the sub-
sequent dotted terms in the relativistic versions of both theories. Thus every
new quantum theory contributed a correction to the previous one. The formula
has proved to be in a very good agreement with experiment. Discrepancies
are of the order of 10~*°, This is of course the great success of this theory.

Today quantum electrodynamics is considered to be the most precise of
physical theories. It should be borne in mind that it rests on three pillars.
The first is Maxwell’s electromagnetic theory, the second—quantum theory,
and the third—the theory of relativity. If any one of them is removed, the
whole theory, so admirably concordant with experiment, will simply collapse.

Every now and then a paper appears whose author proposes a theory that
gives an explanation different from Einstein’s of the Michelson-Morley
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experiment and other simple experiments. On this basis that author then claims
that the theory of relativity can be replaced by his own theory. In fact, there are
many theories explaining the Michelson—Morley and a few other experiments,
but one must not forget that there are a great many experiments whose results
agree very precisely with the theory of relativity. It is worth remembering
that, as in medicine, the standing rule here is: above all, cause no harm. If one
wants to replace a theory of relativity by something new, then the new theory
should predict the results of the same experiments with at least the same pre-
cision as the theory of relativity. Quantitative results of a new theory should
agree with measurements to at least as good an accuracy as those produced
by the old theory.

It is known that a theory that would account for all facts concerning ele-
mentary particles does not exist. Some partial models, however, have been
successfully developed. This applies, for example, to reactions between ele-
mentary particles. Physicists have no ready model which would be good
enough to describe these reactions; the kinematics, however, i.e. that part
of the theory which does not require for description the forces causing the
reactions, has been well worked out and is consistent with experiment. It is
based on the theory of relativity, among other things. It is certain that this
partial model will go to the making of a future “good” theory of elementary
particles.




CHAPTER 3

Galilean Spacetime

In analysing physical phenomena physicists separate out several different
aspects, which are the subjects of study of different branches of physics. We
illustrated this in the preceding chapter in the example of the flight of a cannon-
ball. There are certain aspects which are common to all natural phenomena,
namely those concerning the time and space relationships between the material
objects involved. Hence underlying almost every model of physical phenom-
ena is a model of time and space relationships, or spacetime. It is built by ab-
straction from “what happens” to only the “when and where”. We can con-
sider phenomena that occur close to each other, in a limited region of space
and time, or in the Universe as a whole. Thus we may need to consider differ-
ent models of spacetime.

Before the general theory of relativity was formulated, the prevalent view
was that the properties of space and time were invariant and everywhere the
same. It was thought that the local properties of spacetime determined its
global properties and that a model based on the observation of phenomena in
ouyr immediate neighbourhood applied to the Universe as a whole. Since
Einstein’s time we know that this is not so.

The spacetime of a nuclear physicist differs from that of a cosmologist
because, for example, the latter must take into account the curvature of space,
while it seems unnecessary to allow for it in atomic-scale phenomena and still
less so in nuclear phenomena. Thus we speak not of one space but of many.

The notion of spacetime originated together with the theory of relativity.
Before Einstein, time and space were spoken of separately. However, if we
think about it, we come to see that something which should be called spacetime
according to the present terminology was considered even before Einstein.
We will soon see that, in spite of what is often said, time and space are not
completely separated in Newtonian mechanics.

In the language of modern mathematics: Newtonian spacetime cannot be
naturally represented as a Cartesian product of time and space.

What is spacetime? It is a set of elements called events. In keeping with
what was said earlier, we must define the relationship between the concepts
which occur in a model and that which we observe in reality. In particular,
we must say what the mathematical concept of a point-event corresponds to.
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We obtain it by abstraction from what is called an event in everyday lan-
guage.

Let us turn back to the example of the cannon-ball. Consider the event of
the ball hitting the ground. We note that it lasts a certain period of time and
occupies a certain region in space. For our purposes, however, it is more con-
venient to assign to it a specific instant of time and a defined point in space.
For example, we may choose the moment a selected point of the ball first
touches the ground and the point at which this contact occurs. We then only
need to forget, as inessential, what is actually happening, and we come to the
concept of an event.

The same can be done with any other event that takes place during the
flight of the cannon-ball, as is schematically shown in Fig. 3.1. We can see that

‘(\é

Reality

Events

Fig. 3.1

the concept of an event is obtained by abstraction in three ways: firstly, we
abstract from what really happened, secondly—from how long it took, and
thirdly—from how much space it occupied.

Theories of time and space differ from one another in the mathematical
structures which they adopt for spacetime. All serious theories, however, have
one property in commom: they assume that spacetime is a four-dimensional

differential manifold. To explain this concept, we give a few mathematical
definitions.

Chart. Let E be a set (later E will denote spacetime) and 4 a subset of
E: 4 < E. Let & be a map of 4 onto an open subset of n-dimensional arithme-
tic space R" (Fig. 3.2). We require in addition that £ be a one-to-one mapping.
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The pair (4, &) is called a chart, A the domain of the chart, and ¢ its coordinate
system. The concept of a chart corresponds to what a chart is in geography.
There the set E is the surface of the Earth, the subset 4 a portion of that surface,
and the mapping £ defines the way in which points of that portion are associ-
ated with points on a sheet of paper. This chart is of course two-dimensional.

Compatibility of charts. Let (4, £) and (B, ) be two charts on the set E.
If (ANB, &|4~p) and (ANB, nl4~p) are charts (in other words, if §(4nB)
and 5(4AnB) are open sets) and, furthermore, the maps &on~1!|,4~p and
no€~ eanp, are k-times continuously differentiable, then the charts are said
to be C*-compatible. The number k may take value from 0 (we then speak
of topological compatibility of charts) to co. We can also consider charts
which are analytically compatible; we then write that they are C*-compatible.

In the language of geography, compatibility of two charts means that towns
which lie close to one another on one chart must do so on the other, and that
rivers with smooth sides on one chart must have smooth sides on the other.

Atlas. An atlas of class C¥ is a collection of charts mutually C*-compatible
whose domains cover E. This term is also taken from geography.

Differential manifold. A differentiable manifold of class C* (k = 1,2, ...,
o0 or w) is a set E with a maximal atlas of class C* (i.e. such that no new charts
can be added to it without violating compatibility). The dimension of the
differentiable manifold £ is defined as the dimension of the arithmetic space R"
on which the manifold is modelled.

Any atlas can be extended to a maximal atlas in a unique way. A manifold
is usually assumed to have a countable atlas (as a rule, the maximal atlas is not
countable). We will assume that spacetime is a differentiable manifold of
class C®. In addition, we will assume that it satisfies the Hausdorff axiom,
although some say that in strong gravitational fields this axiom may not hold.

The Hausdorff axiom: For every pair of distinct points of the manifold E
there exist two charts in the atlas of E such that their domains are disjoint and
each contains one point of the pair.

The reader may have noticed that the above definition of a differentiable
manifold is somewhat different from that usually given in books on differential
geometry: we did not assume in advance that the set E is a topological space.
Of course both approaches are equivalent, since the topological structure can
be introduced by requiring that E has the weakest topology in which the
coordinate systems are still continuous.

We now give a few examples of differentiable manifolds.

1. Let E be an open subset of R*. The chart &:E — R defined by the for-
mula &(x) = xis an atlas on E. The set E and this atlas constitute a differentiable
manifold of class C%, i.e. an analytic manifold.
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2. Consider the n-dimensional sphere $°, i.e. the set of points (x;, ..., x,,

Xn41) € R"*1 satisfying the condition

X34 o+ x24xi =1,
An atlas consisting of only one chart cannot be defined on the sphere if we
want to maintain its natural topological structure. This is because the sphere
is a compact set and therefore cannot be mapped continuously onto an open
subset of R". We can, however, introduce an atlas consisting of two charts.
Let 4 and B be the subsets of $” obtained by removing from it the north and
south poles, respectively, i.e.

A=S~-{0,..,0,D}
B=5-{0,..,0, -}

. Define the coordinate system &: 4 — R* and #: B — R" by the formulae

X Xn
§(x13'~-axn:xn+1)= (] ! )>

s eeey
—Xnt1 1'")Cn+1

Xy xn )
Xis oees Xy Xpp1) = s eens .
s +1) (1+xn+1 42Xy

These coordinate mappings are known as stereographic projections {cf.
Chapter 7). The reader will readily verify that the mappings &0~ and 5of~*
are analytic. Thus we can furnish the n-sphere with the structure of an analytic
manifold.

3. If E, and E, are differentiable manifolds of classes C*' and C*:, respect-
ively, then the Cartesian product £, x E, is endowed with a natural differentiable
structure of class C*, where k = min(k,, k,). For, let (4;, &) and (4;, §,)
be two charts on E, and E,, respectively: 4,3 p, & (p,) e R™, 4,3 p,
> &,(p,) € R", Define the mapping &, X &, as

Ex&E)p1,p2) = (51(171): 52(172)) € R" x R"™.

Then the pair (4, x 4,, & x &,) becomes a chart on E; X E, and the collection
of all charts of this form constitutes a C*-atlas on E, X E, .

Using points 1 and 2 above, we can see, for example, that the cylinder
R x 8% and the torus $! x $! are manifolds of class C*.

4. A Lie group is an abstract group which is a differentiable manifold
satisfying the Hausdorff axiom, and in which the group operations, i.e. multi-
plication and inverse, are continuous.

5. All the examples of differentiable manifolds given so far satisfied the
Hausdorff axiom. There are manifolds, however, which do not satisfy it.
As an example, consider the manifold consisting of two open-ended rays and
two additional points, as in Fig. 3.3, with charts defined by the projections on
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Fig. 3.3

a straight line representing R*. It is not difficult to verify that this indeed is
a manifold and that it does not satisfy the Hausdorff axiom: no two charts
will each contain exactly one of the two isolated points.

To sum up, we have assumed that spacetime is a four-dlmensmnal differ-
entiable manifold of class C* with a countable atlas, satisfying the Hausdorff
axiom. From now on, the symbol E will denote just such a spacetime.

Until recently, when speaking of reference systems, physicists used objects
such as standard weights, rigid measuring rods, and clocks. In the last decade
the situation changed, particularly where measuring rods are concerned.
Physically, considering the atomic structure of matter, they are very complex
systems. They are susceptible to many external influences: pressure, tempera-
ture, various fields; so that, in reality, they are never rigid. This was the reason
for the “dethronement” of the famous platinum-iridium standard metre of
Seévres. Today, the formally accepted definition of a metre is based on the
wavelength of a certain atomic radiation. This is because electromagnetic
radiation has a relatively simple structure and is almost independent of the
external conditions, which makes the constancy of its wavelength easy to
maintain, Therefore, in the present book we will speak of light signals rather
than measuring rods, both in the context relating to coordinate systems and
in that of length measurements. In addition to light rays, we shall use ideal
clocks, which can be realized as, say, “nuclear clocks”—practically insensitive
to external influence.

How can we realize the coordinate systems that appear in the definition
of a differentiable manifold? The mathematical concept of a coordinate system
corresponds to that of a reference frame. Reference frames can be imagined
as clocks, with which we fill in the entire space, each with three numbers
engraved, defining the position (Fig. 3.4). The clocks need not be ideal, they
do not even have to keep good time, as long as cloks situated close to one

Fig. 3.4
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another show similar times. In addition, the numbers engraved on neighbouring
clocks should also be close.

Let us note that the reference frames so introduced have no metric prop-
erties. To introduce a metric structure, we must consider certain special
physical phenomena such as the propagation of light and “good” clocks.

What is the simplest way in which to introduce the structure of a differ-
ential manifold without resorting to the concepts or objects that occur
in metric problems, like measuring rods or—in our case—clocks, is a question
worthy of study. More specifically, it would be interesting to know whether
spacetime can be furnished with the structure of a differential manifold
solely by means of light signals. This problem was studied by S. Woronowicz
in his doctoral dissertation, in which he showed that simple observations of
light signals are indeed sufficient to introduce the structure of a topological
manifold. Attempts to introduce a differentiable structure on the same bases
have so far failed.

Sometimes we hear the opinion that the idea of four-dimensionality is
associated with the theory of relativity and that world used to be three-di-
mensional before this theory came into being. Of course this is not so. Space-
time was four-dimensional before Einstein too. To understand what this
four-dimensionality means, consider how we start a letter: we specify the
place where we are and give the date, or the time of the event of writing this
letter. Here lie those four numbers: the altitude above the sea level (we often
give it in postcards from mountainous regions), latitude and longitude (sailors
write these), and time (can be represented by a single number, e.g. the number
of seconds after the birth of Christ). Space is three-dimensional in the theory
of relativity too, only the division of spacetime into space and time is differ-
ent from that in Newtonian physics.

A differentiable manifold is a very general concept, and a spacetime as-
sumed to be no more than just a differentiable manifold would be insufficient
to describe most phenomena. For this reason, we have to introduce in our
spacetime certain additional geometrical structures. One such structure, the
affine connection, also called linear connection or parallel transport, is common
to all theories of space and time. We shall discuss it later. For the present, let
us consider those special models which in providing a basis for the description
of phenomena disregard gravitational interactions.

To understand why we exclude gravity, one must appreciate the exceptional
character of gravitational interactions. The most important feature distin-
guishing gravitation from all other forms of interactions is that the motion
of a body in a gravitational field does not depend on the properties of that
body but only on the properties of the field itself. We know, for example, that
near the surface of the Earth all bodies fall with equal acceleration, custom-
arily denoted by g. No such independence holds for other kinds of interactions.
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In the case of an electromagnetic field, for example, there exist bodies
electrically neutral, which are left unaffected by the field. Furthermore, we
can completely eliminate the effect of the field by erecting a suitable screen.
No such screen is possible against a gravitational field, and this is its second
distinguishing feature. A more detailed analysis shows that gravitational in-
teractions can be reduced (because of these special features) to certain prop-
erties of spacetime. However, this greatly complicates the geometry of space-
time, so that, for the present, we shall leave gravitation aside.

Under this assumption, we have the first law of dynamics, which says that

(1) there exists a preferred class of motions, called free motions,

(2) there exist reference frames relative to which the free motions have no
acceleration.
Usually, point (1) is further clarified by saying that a body is in free motion
when no external influences act upon it. Point (2) is usually formulated in
a somewhat different manner, namely, that free motions are rectilinear and
uniform relative to certain reference frames called inertial frames. The two
formulations are shown to be equivalent if spacetime is furnished with
a geometrical structure which admits the concepts of rectilinearity and uni-
formity. Such a structure is provided by the affine space.

Affine space, An affine space is a pair (E, V), where £ is a set and V" a vector
space, with a mapping “+”: Ex V — E, such that ¥ acts in E as an (Abelian)
group of transformations, i.e. for arbitrary elements p € £ and u, v € V" we have

(p+uw+v = p+(u+v)
and, if 0 denotes the zero element of space ¥,
p+0=p forevery pekL.

In addition, the action of ¥ in E is required to be transitive and free. The
freedom means that the equality p+u = p should imply u = 0. Transitivity,
on the other hand, requires that for any p, g € E there must exist € V" such
that p+u = ¢. Tt is readily seen that, owing to the assumed freedom, if such
a vector exists, it is unique; it is then called the difference between g and P
and written ¥ = g—p.

Dimension. The dimension of an affine space (E, V) is the number equal to
the dimension of the vector space V.

If V is a vector space, then (V, V), with the mapping “+” defined by the
addition of vectors in ¥, is an example of an affine space. All affine spaces of
equal dimension are isomorphic. If, in an affine space, we distinguish a point
0 € E, then to every point p € E we can assign a unique vector u#(p) by the
formula p = 0+u(p). The mapping p — u(p) realizes an isomorphism between
the affine spaces (E, V) and (¥, V). Although, as we can see, an affine space
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is isomorphic to a vector space, the two notions should not be identified. In
an affine space no element is distinguished, while in a vector space there is
one such element: the zero vector.

Repére. A repére or basis, of an affine space (E, V) is the pair (0, ¢), where
ocEande= (eq, ..., e,) is a basis of the n-dimensional vector space V.

Every point p € E can be uniquely represented in the form p = o+u(p),
where u(p) € V. Then we can decompose the vector u(p) with respect to the
basis e, whereupon we obtain

p=o0+&(pe.

Notation in this formula follows Einstein’s summation convention: if an
index is repeated once at the lower level and once at the upper level, the
summation must be carried out over the whole range of that index. The above
formula defines a one-to-one mapping &:E — R®, & = (6%, &2, ..., &"). We can
see that the pair (E, &) is a chart, the domain of which is the whole space E.
This single chart can be treated as an atlas on E, and then E becomes a differ-
ential manifold with the dimension equal to that of the affine space (E, ¥).

Affine transformation. An affine transformation of an affine space (E, V)
is a pair of one-to-one mappings, (f, ay), where f1E — E and op:V — V' is
a linear transformation, such that

fp+u) = f(p)+o,(u).

As follows from this definition, «; is a one-to-one and onto map, thus a bijec-
tion. Similarly, f is a bijection. The mapping o, is uniquely determined by f,
which is why an affine transformation is often identified with the mapping f

alone.
Let us find the form of our affine transformation with respect to a certain

fixed repére (v, ). Let p = p+ &', and f(p) = 0+ &'%e;. We have
f(p) = fo+&e) = f0)+Easley).

Next, as(e;) = «ie;, where (a}) is an invertible matrix. Also, the point (o)
can be written

f(0) = 0+ (f()—0) = 0+ple,.
Finally we obtain
Eli = ‘xji'fj’*‘ﬂia

where det(a}) # 0. An example of affine transformation is a translation

f(p) = p+u, where u is a constant vector. In this case, the matrix (o) is the
unit matrix, o} = o:.

Since spacetime is a four-dimensional manifold, from now on we shall
assume that the dimension of the affine space (£, V) (and hence that of the
manifold E) is 4.
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Straight line. A straight line in E is a set of points of form {Au+p:1 e R},
where p is a fixed point in £ and u a fixed vector in ¥V (Fig. 3.5). The vector u

q(4)
Y

'q(0)

Fig. 3.5

is called the directional vector of the line; it is determined up to a scalar factor.
The point p is not uniquely determined by the line either: any other point of
the line can be taken instead. The parametric equation of the straight line has
the form

q(A) = ul+4q(0).
If we denote x* = &' o g, then
X2 = u'A+x°(0),

where u' are the coordinates of the vector u in the basis e, that is u = u'e;.

The coordinate system &:E — R* defined by an arbitrary repére (0, e) is
called a rectilinear system. The term derives from the fact that the curves
determined by the requirement that three of the coordinates be constant are
straight lines parallel to the basis vectors. For example, by holding &', &2
and &* constant we obtain a straight line for which e, is a directional vector.
Naturally, systems other than rectilinear can also be introduced; they will be
considered in Chapter 10.

From its parametric equation we can see that a straight line is given by a
linear relationship between the coordinates (after A is eliminated). Remember-
ing the 1st law of dynamics, we conclude that these are the straight lines which
are the world-lines of free motions. By a world-line of a material point we unders-
tand the set of all events belonging to its history. The world-line of a material
point, which is a curve in spacetime, must be distinguished from the trajectory
of this point, which is a curve in three-dimensional space.

What will happen if we change the basis, e > ¢’? Clearly, the coordinates
will undergo a linear transformation. Of these coordinates, one should be called
time. As a result of the tansformation, we will obtain a new “time”,
which will be a linear combination of the old time and the old spatial coordi-
nates. Such a linear transformation of time may seem to be unacceptable.
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We will give an example, however, showing that similar (linear) transform-
ations of time can be performed even in ordinary life.

As is well known, there exist time zones on the Earth. We can imagine an
international agreement (putting aside its impracticality), according to which
the time zones are replaced by a continuous distribution of time. Then, if we
travelled 1° east-ward, we would have to advance our watches by 4 minutes.

Now take a not-too-large region on the Earth’s surface and approximate it
with a plane, as has been done in Fig. 3.6. Imagine an aeroplane, on board

-45% -30° -15°  0° 15° 30° 45° Longitude

g 10 1 12 13 14 15 Hour
Fig. 3.6

which all watches are set for GMT. The pilot of the plane will find that his
time is expressed in terms of the time on Earth and the longitude according
to the formula

pilot’s time (in hours) = Earth time (in hours)—1/15 of longitude (in
degrees).

We can see that the relationship between the pilot’s time (GMT), Earth
time and longitude is linear. If the plane’s flight is rectilinear and uniform
from the point of view of the watches on Earth, then the pilot will note that,
from the viewpoint of his watch, the flight is also uniform. Of course the
reason for this conformity is that the relationship between the pilot’s time and
the time on Earth is linear.

So far we have looked at structures and concepts common to all theories of
spacetime. Now we shall consider those properties which distinguish the differ-
ent theories.

To begin with, the pre-relativistic theories assume that among many possible
times (defined, for example, as the fourth coordinate of an event with respect to
a given repere) there is one time especially suitable for the description of
physical phenomena; it is called absolute time. To have this time everywhere
in the Universe, we would have to synchronize all possible clocks. How can
this be done? Before Einstein, little thought was given to this question, and
those who did consider it, probably thought that it could be done by means
of some instantly propogating signals of as-yet-unknown description. Ever
since 1675, when Olaf Romer measured the velocity of light by observation
of the eclipse of Jupiter’s moons, it was known that light signals have finite
velocity, but it seemed that something, e.g. gravitational disturbances, propa-
gated instantly.
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What is absolute time? Given a repére (0, €) in our spacetime, we can call
the fourth coordinate of an event the time with respect to that repére. The
statement that there exists absolute time implies that we distinguish one of the
times so defined.

The simultaneity of two events with respect to a repére (o, €) is easily defined:
events p and g (p, q € E) are simultaneous with respect to repére (o, €} if
& (p) = &*(g). A subset of E consisting of all simultaneous events is a hyper-
plane in E. To different values of the coordinate &* there correspond different
parallel hyperplanes.

Saying that there exists absolute time amounts to saying that these hyper-

planes exist objectively in spacetime, i.e. that they constitute an additional

geometrical structure, regardless of whether we consider repéres or not. These
hyperplanes are sets of absolutely simultaneous events, or of constant absolute
time ¢. Of course, the existence of absolute time distinguishes some of the
repéres, namely those whose fourth coordinate coincides with absolute time,
i.e. for every event p € E we have £4(p) = t(p). The basis vectors ey, €, and e;
then lie in the hyperplane of the events simultaneous with o, as shown in
Fig. 3.7. The vector e, has intentionally been drawn not perpendicular to this

e

\ €,8,€3

°

Fig. 3.7

plane because we have not introduced the concept of perpendicularity in this
context. If we did so, we would have to distinguish straight lines which inter-
sect the hyperplanes of simultaneous events at right angles. Then it could be
said that the material points for which these lines are world-lines are at abso-
lute rest.

According to the Galilean principle of relativity this statement makes no
sense because all inertial systems are fully equivalent for describing physical
phenomena. In contrast, absolute rest did make sense in Aristotle’s theory of
space and time. There, having introduced the notion of vectors perpendicular
to the hyperplanes of simultaneous events, we could assign to every point in
space-time a point on one of those hyperplanes (arbitrarily chosen) by moving
along a straight line perpendicular to it. Spacetime would then become a Car-
tesian product of space and time, as pictured in Fig. 3.8.
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Fig. 3.8

Let us give an example illustrating the difference between the Aristotelean
and Galilean theories. In either theory it is possible to find how much time
elapsed between the battle of Hastings and the conception of the theory of
relativity. According to Galileo, we cannot tell what is the spatial distance
between these events, because we would first have to say against which reference
frame we are going to measure it. An Earth-bound system is not good because
it is not inertial, whilst distances measured in different inertial systems will
also be different. According to Aristotle, however, there is a system among
inertial systems which is “at rest”, and it is with respect to that system that we
should measure the distance, which will then have an absolute meaning.

Absolute time alone does not determine the structure of Galilean space-
time. In addition, it is asserted that the hyperplanes of simultaneous events are
Euclidean spaces. This permits measuring distances between simultaneous
events.

We shall now define the geometrical structure of Galilean spacetime in
a more mathematical manner. Galilean spacetime is a four-tuplet (E, V, 7, k).
Here (E, V) is a four-dimensional affine space and 7 is a form on V, i.e. a linear
mapping 7:¥ — R, The space of all forms on a vector space V is usually de-
noted by V*; we shall therefore write 7 € V*. Given a form =, we can define
the set §' = {v e V:7(v) = 0}, which is a subspace of ¥ and the elements of
which will be called the spatial vectors. Conversely, a three-dimensional sub-
space S of V defines—up to a constant factor—a form 7 on ¥, which vanishes
on §. Finally, 4 is a positive-definite product in S, i.e. a bilinear, symmetric
and positive-definite mapping 4: Sx .S — RI.

Let p € E; then the absolute time ¢ of a point p, measured from point o,
is #(p) = ©(p—p). By adding to p a spatial vector, we obtain an element in E
simultaneous with p. The hyperplane of events simultaneous with p is the set
p+S8 = {p+s:5s€ 8} The scalar product s serves to measure the distance
between simultaneous events. Let p and ¢ be two such events, i.e. (p—g) € S.
We define the distance between p and ¢ as the number

lp—qln = Vi(p—q, p—q).
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It follows that speaking about distance only makes sense for simultaneous
events, because the difference of non-simultaneous events is not a spatial vec-
tor and the scalar square 4(p—g, p—q) is then undefined.

We can now formulate the concept of inertial reference frames, which
corresponds to distinguishing a certain class of coordinate systems in our
mathematical model. Rectilinear coordinate systems in E are distinguished by
the affine structure of spacetime; every such system has a corresponding repére.
Inertial coordinate systems constitute a narrower class; they are associated with
special repéres called inertial repéres.

An inertial repére in E is a repére (o, e) such that the basis e of the vector
space V has the following properties:

(1) v(es) =1,

(2) t(e) =0 for a=1,2,3,

(3) hley ep) = O
dxp 18 Kronecker’s symbol, i.e. it is zero when « # B and one when o = §.
The vectiors e, are spatial, mutually prependicular and of length 1. Owing to
conditons (1) and (2), the coordinate &* is equal to the absolute time 7 meas-
ured from point o, i.e., for every p € E we have §*(p) = #(p).

A Galilean transformation is a one-to-one mapping of E onto itself which
preserves the structure of E, that is the affine structure, 7 and h. More precisely,
it is a pair of one-to-one mappings f:E — E, y;:V — V such that

) if p € E and u € V then f(p+u) = f(p)+yr(w),

(2) v5 is a linear mapping,

3 v(yrw)) = t@wyforueV,

@) if v, w € S, then h(v, w) = A(ys(2), (W)

We will now find the exact form of Galilean transformations. Let us de-
compose the point p € E with respect to the repere (0, €):

p = e tte,+o.
The Galilean transformation gives
f(p) = §%,+1t'e,+0.

We want to find the relationship between the coordinates (§'% ¢') and (&% 7).
Since e is a basis in ¥, we have

yrlew) = RL es+ 0y,
yiles) = Ve + Pey.

From condition (3) it follows that firstly O, = 0 and secondly P = 1. Prop-
erty (4) implies orthogonality of the matrix Rj, i.e.

R% R‘g 6uy == 656 .
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Next we use condition (2), the linearity of y,:

f(p) = f(E%+tes+0) = yp(§%y+1e,) +£(0)

= E*Rfes+1tVPes+te,+ (f(0) —0)+0.
Since f(p)— 0 is a constant vector,
f(0)—p = d’e,+tye,,
we obtain
flp) = (E'Re+ 1V +d)ep+(t+10) e, +0.
Thus, the Galilean transformations have the form
&% = REEP + V1 + o,
t = t+t,.

Having developed the geometrical model of spacetime, we can formulate
the laws of mechanics of material points, rigid bodies and continua in its lan-
guage. For example, the equation of free motion will have the form

e
dt?

where ¢ is absolute time. It then turns out that Galilean transformations carry
solutions of the equations of mechanics into solutions of the same equations;
in other words, Galilean transformations are symmetries in mechanics. The
Galilean relativity principle is often expressed by saying that all inertial systems
are fully equivalent for the description of mechanical phenomena. Of course
this does not mean that every physical phenomenon manifests itself identically
in all inertial systems. For example, the phenomenon of a material point
resting in a certain inertial reference frame will be seen as a rectilinear and
uniform motion in some other inertial frame. This agrees with the Galilean
relativity principle, because both rectilinear uniform motions and rest with
respect to an inertial frame are solutions of the free motion equation mentioned
above.

Historically, the first fully geometrical formulation of mechanics was given
by Cartan [54]. The problem was later studied by many other authors.




CHAPTER 4

In Search of the Ether

So far in our discussion of Galilean spacetime we were only concerned with
mechanical phenomena. The question arises: how should we deal with electro-
magnetic phenomena, particularly optical phenomena? We have singled out
the optical phenomena because, historically, their role was especially import-
ant.

Consider the propagation of light in a vacuum. It is known to be rectilinear,
like the free motion of material points. There is one significant difference
however: the velocity of light is constant. More precisely, in mechanics the
initial conditions, i.e. the position r(0) and velocity £(0), determine the position
r(¢) of the point at any subsequent time ¢ In optics, on the other hand, it is
enough to know r(0) and the direction of the initial velocity to know the po-
sition r(¢) of the light point at time ¢.

To formulate the laws of optics in conformity with the Galilean model, it
is first necessary to distinguish the reference frames with respect to which the
velocity of light is c¢. As we know, the velocity of light appears in Maxwell’s
equations governing electromagnetic phenomena. Let us consider what the
velocity is with respect to an inertial system.

If the curve ¢ x(t) € E is the world-line of a material point or a light ray,
then dx/dt is called the four-velocity of that point (or ray). In every inertial
reference frame the coordinates of the velocity four-vector are (dx'/dt) =
= (dr/dt, 1). Hence dx/dt—e, is a spatial vector (velocity in the ordinary sense)
and we can measure its length |dx/d¢— e,|, as defined through the scalar product
% in the space S. Let u be the four-velocity of a light ray. All inertial frames for
which the equality [u— e,], = ¢ holds for every light ray will be distinguished.
Since light can propagate in all directions, it is easy to show that there exists
only one such vector e,. We shall call it the ether and denote it by e.

Let us stress the double meaning of the word ether. Firstly, vector e deter-
mines the inertial frame (called the ether frame), relative to which the velocity
of light is ¢, and in which, consequently, Maxwell’s equations are satisfied.
Secondly, the term ether has been used to mean a hypothetical material medium
at rest in that frame; electromagnetic phenomena were understood to be
manifestations of vibrations of that medium. Notice that the existence of a
material ether implies the existence of the geometrical ether, but not vice versa.
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It:is possible to conceive of a physical theory which would deny the existence
of the material ether and at the same time admit an inertial frame with respect
to which the velocity of light is c.

With a greater emphasis placed on the material aspect of the existence of
ether, it is easy to come to a certain generalization. We can imagine an ether
which is not at rest in any inertial frame. Its velocity changes from point to
point in spacetime. From a mathematical viewpoint we then deal with a vector
field Es p > e(p) € V, the four-velocity field of the material ether. In this way,
at every point of spacetime we have a local inertial frame whose fourth vector
coincides with e (Fig. 4.1).

Fig. 4.1

The theories in which the vector e is variable are referred to as theories
of convected, or dragged, ether. The term comes from the once plausible
assumption that moving ponderable bodies drag along some or even the whole
of the ether that surrounds them. Theories in which e is a constant vector are
called the theories of absolute ether.

We shall now look back on some of the experimental attempts to detect
ether and reveal its nature.

At first sight it appears that a strong argument in favour of the existence
of an absolute ether is provided by the phenomenon of aberration. Let us
recall its principle. Light from a star G on the axis of rotation of the Earth

%G G
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about the Sun is obverved by means of a telescope L. The picture on the left
of Fig. 4.2 illustrates the case where the Earth is at rest with respect to the
hypothetical ether. On the right, the Earth moves with velocity v relative to
the ether. To observe the light emitted by the star G, the observer must tilt the
telescope by an angle § such that tan6 = v/c). Observations yielded the angle
26 by which the position of the telescope had to be altered every half a year if
the star was still to be seen in it. The velocity v obtained from the above for-
mula turned out to be approximately 30 km/s, which is the orbital velocity of
the Earth relative to the Sun.

If we accept the existence of an absolute ether and the corpuscular nature
of light, the phenomenon of aberration becomes analogous to that of slanting
streams formed by raindrops on the windows of a fast moving train. The
counter-part of the ether in this case is the air which the train moves past.

This analogy, although attractive, is not complete, and as it is, the effect
of aberration can also be explained without recourse to the concept of ether.

Fizeau (1859) experimented with the velocity of light in moving media. He
transmitted light through tubes filled fast moving water, both in the direction
of the flow and opposite to it. He then compared the velocity of light in each
case. It turned out that the two velocities differed, which suggested that the
ether was, at least partially, dragged by the water. Quantitatively, good results
are obtained if we assume, after Fresnel, that the coefficient of ether drag for a
material medium with a refractive index n is o = 1—1/n By the ether drag
coefficient we mean the ratio of the velocity of the dragged ether to the velocity
of the body that drags it. Hence for optically inert bodies we have a = 0,
which agrees with the phenomenon of aberration, while for bodies optically
active & > 0, i.e. such bodies will partially drag the ether.

A more detailed analysis shows that the optical phenomena which can be
described by formulae involving quantities of order not higher than first in
B = v/c are easily tractable by many different theories. In particular, the
theory of relativity gives the same predictions for effects of this type, including
the change in the velocity of light in moving water (Fizeau’s experiment) and

E:]L

Fig. 4.3
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aberration, among others. In this connection, effects of the second order were
investigated as possible arguments in favour of the ether theory.

A relevant experiment (first suggested by Maxwell) was carried out in 1887
by Michelson and Morley [34]. The beam of light from source § falls on a semi-
transparent plate Z and is partially reflected and partially transmitted, to reach
the mirrors B and C. From there, the light is reflected back to L, where its
interference pattern is observed (Fig. 4.3). The apparatus is positioned in such
a way that the arm 4B is parallel to the direction of the velocity of the Earth
relative to the Sun (and therefore, approximately, relative to the ether, if the
Sun-bound frame approximates the inertial frame of the ether). If /, is the
distance between the point 4 and the mirror B, then the time taken by the light
to travel along the path 4B4 is

From the triangle ACA (Fig. 4.4), which represents the path of the ray in
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Fig. 4.4

the supposed ether frame, we find that the time ¢ along the path ACA is
21,
cy1-8% .

The difference between the two times then is

A2 ([ h 12).
/1= \y1-p?
If the interferometer is rotated so as to interchange the roles of the mirrors
B and C, the time difference is calculated as

“ i i)

The observations of Michelson and Morley aimed at finding whether this

Ar




38

rotation produces a shift in the interference pattern, i.e. at experimentally
measuring the difference

A-a = 2("&{2( L -1) v il g
V1= \Y1-p? ¢
To a high degree of accuracy and independent of the time of year, the result
was 4—A’ = 0. The measurements have since been repeated many times. The
result of highest experimental accuracy was obtained in 1958 by Townes and
his collaborators [6] with the use of ammonia masers. Their measurements
gave f < 1077, while the theory of the absolute ether predicts a value of

. 30 km/s
Of the Order Of m“ig
In 1892, to explain the null result of the Michelson-Morley experiment,
Fitzgerald and Lorentz independently suggested that bodies moving relative
to the ether undergo a contraction in their direction of motion by a factor of

}/ 1— B2 Indeed, if we accept the Fitzgerald-Lorentz hypothesis, then

2
A=4 = 10 lzo);

y/1-p7
where /;, and /,, denote the lengths of the arms of the interferometer at rest
with respect to the ether. The interferometer used by Michelson and Morley
had arms of nearly equal length, ;o = o, which explains the very small abso-
tute value of the shift 4.

A modification of the Michelson-Morley experiment, aiming at a verification
of the Fitzgerald—Lorentz hypothesis, was designed by Kennedy and Thorndike
[30]. They used an interferometer with arms of different lengths, / = lio > by
In this case, assuming the contraction hypothesis,

= 10"%

@~ i) )

Kennedy and Thorndike compared the values of 4(f) obtained in the same
experimental setting at different times of day and year. If the ether existed and
the contraction hypothesis were true, then, owing to the motion of the Earth,
the value of A() should depend on the time of measurement, but this effect
was not observed. Thus, the Lorentz-Fitzgerald hypothesis is not sufficient
to explain the experiment of Kennedy and Thorndike.

An attempt to save Newtonian physics which was comparatively difficult
to refute was Ritz’s emission theory [42], published in 1908, when the theory of
relativity had already been formulated. It was a modernized version of the
corpuscular theory, stating that the velocity of light in vacuum is ¢ relative
to the source. In other words, every source has its own ether. The theory
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explained both the effect of aberration and the null results of the Michelson—
Morley experiments.

The followers of Ritz’s theory gave different answers to the question of
what happens to the light reflected from a mirror that moves relative to the
source. Ritz himself maintained that the velocity of light is still ¢ with respect
to the original source.

The emission theory could not be reconciled with modern quantum views
on the mechanism of the emission of light. In addition, it is contradicted by the
observations of the Doppler effect on binary stars.

The question arises: have all possible ways of reconcilling electrodynamics
with the Galilean model already been exhausted? Aren’t there any models
other than the theory of relativity in which one could develop electrodynamics?
It is not easy to give a categoric answer to these questions.

To illustrate what we mean, consider the following situation in data analy-
sis. Suppose that a physicist obtains a sequence of numbers which he plots
on a graph. Someone who knows what’s what will notice that the points de-
lineate an exponential curve and, using the methods of data analysis, will find
that an exponential curve is indeed a good description of the data. Someone
¢else, however, will say that he only accepts algebraic curves and that he does
not like the analysis produced by his predecessor. After all, if we have a finite
number of experimental points, we can always choose a polynomial of a suit-
able order which will fit the data (Fig. 4.5).

There is a loose analogy between this situation and the relationship between
theory and experiment. A finite number of experimental facts can always be
explained by many theories. One of the criteria for accepting one of them is
simplicity. Another, much more important criterion is whether it can be used
for modelling other experiments. And indeed, the distinguishing feature of the
theory of relativity is that not only does it explain the Michelson-Morley, the




40

Kennedy-Thorndike, the aberration and other classical experiments of optics,
but it is also a basis for other physical theories, which describe a much richer
class of physical phenomena. Thus, if someone puts forward a theory explaining
the optical experiments of the turn of the 19th century, he should next verify
that his theory is in agreement with the results of quantum electrodynamics and
elementary particle physics.

At the time he published his paper On the electrodynamics of moving bodies,
Einstein [7] did not know the results of the Michelson-Morley experiments.
His considerations were based on the approximate relativity principle for
electromagnetic phenomena, which had been known for a long time. Everybody
knows that by moving a magnet near a closed conductor we will generate an
electromotive force, and hence a flow of current in the conductor. The direc-
tion and magnitude of the current will not change if instead of moving the
magnet we move the conductor in the opposite direction with the same speed
(Fig. 4.6). These two situations can be interpreted as the same phenomenon
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observed in two different inertial frames. The effect observed does not depend
on the choice of the inertial frame. ,

Einstein, who heard about the failure of the experiments trying to detect
motion relative to the ether, found a way out of the dillema: his principle of
relativity. It says: mechanical and electromagnetic phenomena are the same in
all inertial frames. This principle generalizes the Galilean relativity principle
in that it embraces not only mechanical but also electromagnetic phenomena.
Nowadays, the principle of relativity is formulated in a slightly different way
to say that every physical phenomenon is the same in all inertial frames. At the
turn of the 19th century effectively only mechanical and electromagnetic
‘phenomena were known, so that the two formulations were then equivalent.

It may appear that the step made by Einstein was not so big, that it was a
formalization of the facts known for a long time. As it turned out, however, it
had far-reaching consequences. For example, the relativity principle implies
that Maxwell’s equations should have the same form in all inertial frames and
consequently the velocity of light should have the same value c in all inertial
systems. This of course contradicts the Newtonian theorem of the addition of
velocities.
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The principle of relativity is often expressed in terms of inertial observers,
who are a kind of anthropomorphization of inertial frames. It is indeed con-
venient to use, besides a repére (o, e, , e,, €3, €,), an observer whose world-line
is tangent to the vector e,. The observer is equipped with a clock which measures
a unit of time while he passes from the point o to the point p+e,. In addi-
tion, he has theodolites “levelled” along the vectores e, , ¢,, and e3, and can
measure the angle of incidence of the light rays that reach him.

Einstein’s relativity principle says that physical phenomena are the same for
all inertial observers. In the Galilean approach, all inertial observers had equal
rights with respect to mechanical phenomena. In Einstein’s, we have the prin-
ciple of their full equivalence with respect to all phenomena (Fig. 4.7). This

Privileged All observers
observers have equal rights
E E
e
e e
Galilean theory + Theory of relativity

+electrodynamics

Fig. 4.7

principle, together with a few additional assumptions of a mathematical nature,
has led to significant changes in the ways of describing the world.




CHAPTER 5

Predictions of the Theory of
Relativity and Their
Experimental Verification

Accepting the principle of relativity implies relinquishing absolute time.
For, let us suppose that absolute time exists and that the velocity of light does
not depend on the motion of the source.

Let a point p € E lie on the hyperplane of simultaneous events defined by
the equation ¢ = #,. From this point we send two light beams in opposite di-
rections, their world-lines being rays beginning at p. We pass a straight line
through the midpoint of the segment joining the points of intersection of these
rays with a hyperplane ¢ = #;, where #; > /o, and through p (Fig. 5.1). This

E Ether

Fig. 5.1

straight line is chosen canonically, since it is independent of the motion of the
source (owing to the isotropy of the space, it does not depend on the direction
of the beams either). The material point for which this line is the world-line
is naturally described as being at rest. Thus we come to the notion of absolute
rest (ether), a contradiction of the principle of relativity.

From now on, therefore, we shallno longer assume that spacetime E incorpo-
rates absolute time. We shall maintain the affine space implied by Newton’s

1st law.
Every inertial observer has a clock. The time of an event p relative to an
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observer O associated with the repére (o, e,, ;) (where « = 1, 2, 3) is defined
by the equality

p = t(p)es+E(pes+o,
while the time of the same event p with respect to an observer O’ is defined by
p = t'(p)es+&i(pe,+v.

The times ¢ and ¢’ are connected with the bases and do not have any metric
properties (Fig. 5.2). The question arises: how can the clocks of different

Fig. 5.2

observers be synchronized or, in other words, what does it mean in this model
to say that observer O and O’ use identical clocks?

First consider the case where the world-lines of the observers intersect
(Fig. 5.3). To simplify the argument, assume that the repére of either observer

Fig. 5.3

is attached at the point p of intersection of the world-lines. Then t(0) = ¢'(0)= 0
The segments pq’ and p'q represent the light rays. If #(p) = ¢'(p’), then
since the observers have equal rights and their clocks are identical, we should
have #(q) = t'(q’). Let us stress that this conclusion would not hold if we
adopted the ether hypothesis, letting the velocity of light depend on the ref-
erence frame.




Fig. 5.4

Figure 5.4 illustrates the synchronization problem when the world-lines
of observers O and O’ are parallel. The agreement between the clocks now
means that Ar = At’. Of course in this case there is no good way of defining
a common starting point from which to measure time.

If the world-lines of observers O and O’ are skew, the clocks can be synchron-
ized in two steps—there exists a world-line (of an observer O”) intersecting
one of the given lines and parallel to the other. From now on we shall assume
that the clocks of all inertial observers are synchronized as described above.

The relativity of simultaneity. Since we rejected the concept of absolute
time, we must also give up absolute simultaneity. Two events regarded as
simultaneous by one observer will not, in general, be simultaneous to another.
We shall analyse this question in a simple case. »

Let the world-lines of observers O and O’ intersect. Observer O sends
intermittent light signals towards O’ (Fig. 5.5). The triangles with vertices

Fig. 5.5

at the points of emission by O, reception by O’, and the intersection o,
are similar. It follows that the coefficient a in the equation t'(g") = at(p)
does not depend on p—the point from which the signal is sent. Similarly, we
have #(g) = «'t’(p’). By chossing the events p and p’ so that t(p) = t’(p’) and
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using the synchronization condition, we conclude that o' = «. Obviously,
oz 1

Now suppose that a signal is sent by observer O at a time ¢, and is received
by O’ at a point p’ corresponding to time ¢’. Using a mirror, observer O’
reflects the signal back to O, who records its arrival at an instant z, (Fig. 5.6)

OI

Fig. 5.6

Which event on O’s world-line will be regarded by O as simultaneous with the
event p’? From the point of view of observer O, the sensible choice is the event p
such that

1 1 1
t=tp) = 5 (ti+1) = 7(06+;)t',

It is easy to see that £ > ¢’. This effect is known as time dilation. Observer O
will comment on this fact by saying that the clock of O’ is slow. Observer O’
will not agree to regard the events p and p’ as simultaneous. As an exercise we
propose that the reader finds the event on O’s world-line which will be viewed
by O’ a simultaneous with p’, and shows that to O’ the clock of observer O will
appear to have slowed down by the same factor. We conclude that moving
clocks go at a slower rate than clocks at rest and that every observer can notice
this phenomenon.

Let us calculate the coefficient «. If O’ moves with a velocity V relative
to O, the distance between O’ and O at the time ¢ = 1(z, + t,) is

1
Ve = 7V(t1+tz) = %(1+O‘2)th'

To travel the same distance, light will need the time et~ 1) = L2ty so

%(1 +a)Ve, = %(a2~l)ct1.
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After simple transformations we obtain

_ 1+p v
(x“‘/lnﬂ’ whereﬁ~—7.

Hence the time dilation is given by

=y 1-p.
The same formula, with ¢ and ¢’ replaced by Ar and A¢’, holds for inertial
observers whose world-lines do not intersect. In the special case where the

world-lines of O and O’ are parallel, i.e. the observers are at rest relative to
each other, we have At’ = Ay, i.e. there is no time dilation.

Distance measurements and Lorentz transformation. Suppose that observers
O and O’ want to determine the position and time of occurrence of an event p.
For simplicity, let us assume that p is in the same plane as the world-lines of the
observers.

Figure 5.7 represents the radar method of measuring distances. At a time £,

Fig. 5.7

observer O sends a light signal which passes O’ is reflected at p, again passes O,
and returns to O at time £,. Observer O will calculate the distance of the event
pas

1
x = = e(t— 1)

and the instant when it occurs as

1
= »i-(t1+t2).

An analogous expression will be obtained by observer O’. As a result, the
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times at which the light meets the observers will have the values shown in Fig.
5 7. According to our previous considerations we have

' x’ ( x)
V"= alt— ),
[ c

x , x
t+ = oc(t +~w—).
c c

It follows that ¢®t'?2—x? = c®t?—x2. Thus the expression ¢2t>—x? is inde-
pendent of the reference frame. We say that it is an invariant in special rela-
tivity theory.

In terms of ¢ and x, #" and x’ are expressed as

t’-~l~(zx+—~1~)t———l— )=
2 o 2\*" ) e

x’ 1 o+ L x— L o ! ct

2 o 2 oaf
Substituting the expression we found for «, involving the velocity ¥ of observer
O’ relative to observer O, we obtain

t—(Fx/c?) Y= x—Vt

Vi-g Vi-p
The above formulae are called the special Lorentz transformation equations.
They were first found by Larmor [32] as transformations which do not change
the form of Maxwell’s equations; his approach, however, was purely formal.
It was Einstein who first gave a physical meaning to the quantities involved,
Le. interpeted them as corresponding to the readings of good clocks and correct
measurements of distances.

We shall now discuss some consequences of the special Lorentz transform-
ation.

t =

Non-relativistic limit. Suppose that the velocity ¥ of the observer O’ is
_ small compared to the velocity of light ¢, thatis 8 < 1. The Lorentz transform-
ation equations then reduce to

=1, x =x-Vi.

~ The same result is obtained by taking the limit as ¢ — co. The resulting for-
mulae correspond to the special Galilean transformation. For speeds small
Compared with ¢, or, equivalently, if ¢ is considered infinitely large, the results
_ of relativistic physics become the results of Newtonian physics. This statement
tefers not only to the Lorentz transformation but to all results obtained on the

the basis of the theory of relativity.
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Doppler effect. Consider a plane monochromatic wave moving from ob-
server O to observer O'. The field component of such a wave is proportional
to cos k(x—ct). The frequency of the wave multiplied by 2= is @ = k¢, and

the wavelength is A = 2r/k. We know that x—ct = ~(%(x’~—ct’), so that

w = li ¢ = —w&r, while A’ = «/. Let us write the formula for the transform-
o

ation of frequency as follows:

o' = ’;:_!E;«w
Vi=p
The numerator coincides with the classical formula while the denominator
is a consequence of time dilation. The relativistic Doppler effect was observed

experimentally in 1937 by Ives and Stilwell, who thus confirmed time dilation.

Length contraction. Let a rod of length I, in the system in which it is at
rest move with a velocity ¥ relative to an inertial observer 0. To be able to
say what the rod’s length is as measured by observer O, we must first specify
the method of measurement. Suppose that O uses the radar method, i.e. the
same method which led us to the Lorentz transformation. The instants #; and ¢,
correspond to the rod’s endpoints passing O. The observer will send two light
signals towards the ends of the rod, and will do this in such a way that—from
his point of view—the reflection from both ends will occur simultaneously
(Fig. 5.8). Using the method described previously, he will determine the distances

Fig. 5.8

to each end, x, and x,, and will conclude that the length of therod is [ = x;
—x,. By placing another fictitious observer O’ at one of the rod’s endpoints
and using the Lorentz transformation, we find that

I = IOI/T:EE
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Thus from the point of view of observer O the rod is shorter than it is from the
point of view of O’, relative to whom the rod is at rest. Let us note that the
above formula for length contraction coincides with that proposed by Fitzge-
rald and Lorentz to explain the null result of the Michelson-Morley experi-
ment.

Another way in which O can measure the length of the rod is to measure the
velocity of the rod, ¥, record the times ¢, and ¢, at which the rod’s ends pass
him, and hence find the length of the rod as / = V{(t, —1,). It is easy to verify
that the result will be the same as in the radar method.

Velocity addition theorem. Observers O and O’ describe the motion of a
material point differently (Fig. 5.9). Observer O reports the distance x at time ¢,

o

}““

2x(1)

Fig. 5.9

ie. gives a function ¢+ x(¢), while observer O’ uses a function t' s x'(t).
The velocity of the material point relative to O is v = dx/d¢ whilst that relative
to 0" is ¢ = dx'/d¢’. Since

o Vx'
o2

" Vi

x'+Vt
X EE e and 4
V1i-p2
we obtain
dx'+Vde’ U4V
Vdx’ Vo'

de'+ — I+

Let us look at this formula more closely. The first conclusion is that the
inequality 2’| < ¢ holds if and only if |o] < c. Furthermore, v = ¢ if and only
if v = c. Besides, this was an initial assumption. The formula by no means
implies that the velocity v cannot exceed the velocity of light. The theory of
relativity does not make a categorical statement on this subject. The question
of super-light speeds will be taken up further in Chapter 6,
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Another thing to note is that in the non-relativistic limit, as ¢ — oo, we obtain
v = ¢’ 4V, the classical, Galilean formula for the addition of velocities

The “paradox” of twins (the clock paradox). The formula for time dilation,

t =ty 1— 2, leads to conclusions which are seemingly paradoxical. It follows
from it, for example, that if one of twin brothers is sent for a long journey in
space, he will return to Earth younger than his brother. This statement is
argued against on the grounds that the situation of the two brothers is identical
since each of them moves with the same (in magnitude) velocity relative to the
other. The fallacy of such a reasoning is illustrated by Fig. 5.10. The fact

Fig. 5.10

that one of the brothers is subjected to accelerations breaks the symmetry
between them. The continuous line in Fig. 5.10 is an idealization of the twin’s
journey; the world-line of the traveller must be smooth because hee cannot be
subjected to infinitely large accelerations. His real world-line, in the periods
when the engines of his rocket run, is represented by the dashed line. We shall
return to this question in the next chapter.

Geometrization of velocity addition. The invariant of the special Lorentz
transformation, x?—c?¢2, resembles the Pythagorean square of a distance.
Indeed, putting 7 = ict, we can write it as x>+ 72 Let y be the number
defined by the equation tanhy = f. Then

1 . g
coshy = ———, sinhy = —o—.
YTy PTyie
The Lorentz transformation equations take the form
x" = xcoshy—ctsinhyp,

—xsinhy-+ctcoshy




Substituting ¢ = ip, we obtain (coshig = cosg, sinhig = ising):

’

x' = xcosg-— Tsing,

’

1’ = xsing+ vcose.

Thus the passing from one inertial frame to another in the plane (x, 7) corre-
sponds to a rotation through angle ¢. The angle y is called the hyperbolic
angle. Tt is easy to verify that o = ;/ (A+3/(1—p) = expy, ie. p = Ina.
Imagine three inertial observers O, O’ and O, whose world-lines intersect
at one point (Fig. 5.11). The coefficients «, o’ and &’ correspond to the transi-

ol

Fig. 5.11

tions from frame O to frame O, from O’ to 0", and from O to 0", respect-
ively. The corresponding hyperbolic angles are defined by the equalities:
p=Ino, ' =Ina, p” = lna”. From the definition of the coefficients «
we have o'’ = o’a. It follows that ¢’ = p+y’. We can see that the hyperbolic
angle is an additive quantity. In special relativity, instead of adding vel-
ocities when passing from one inertial frame to another we can add the hyper-
bolic angles. However, such a simple (commutative) addition law is only valid
for motions in the same direction.




CHAPTER 6

.

Minkowski Geometry

We have seen that two inertial observers choosing the event o corresponding
to the intersection of their world-lines as the origin of the system (Fig. 6.1)

0

Fig. 6.1

ascribe to an event p the same number ¢*#? —x? = ¢2¢'?— x'?, called the square
of the interval between p and p. It is the counterpart of the square of the distance
in ordinary two-dimensional Euclidean geometry, i.e. of an expression of the
form x?+ 72, Taking the four-dimensionality of spacetime into account is not
difficult. By a suitable choice of the repére (o, ¢;) the scalar square of the
vector u = p—p can be put in the form

glu, u) = A2 —x? =y -2,
where
p = Xey+ye,+zes+te,+p.

Let us return to Galilean spacetime. Introducing scalar product into it
becomes possible if we assume the existence of ether. Recall that Galilean
spacetime was defined as a four-dimensional affine space with two metric
elements: an absolute time form 7 € ¥* and a scalar product /4 in the subspace
S = kerv of spatial vectors. This model of spacetime was sufficient for the
description of mechanical phenomena. To describe electromagnetic phenomena
in it, it was necessary to bring in the ether, a non-spatial vector e. We adopt
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the convention that this vector is normalized, i.e. 7(e) = 1. For any vector
ke V we can write

k = et(k)+ (k—et(k)).

It is easy to see that v(k—ev(k)) = 0, so that k—ez(k) is a spatial vector
{belongs to S) and therefore its scalar square is defined. If ke Vis a tangent
vector to the world-line of a light ray (the propagation vector), then the equality

Vh(k—er(k), k—er(k)) _ .
(k)
is a mathematical expression of the fact that, relative to the ether, light propa-
gates at a constant velocity, c.

We can also proceed the other way round. Namely, define a map g:
VxV — R as follows (u, v € V):

8(u,v) = (W) v(@) ~h(u—er(w), v—er(v)).

The equality g(k, k) = 0 occurs when, and only when, & is a directional vector
of a light ray. Vector satisfying the equation g(k, k) = 0 are called null vectors.
Thus null vectors are the vectors of light propagation (Fig. 6.2). For this
reason, the term “null vector” is often replaced by “light vector”.

E

t=const

t=const

e - D

i

C.

Fig. 6.2

The mapping g possesses all the properties of a scalar product: it is bilinear
and symmetric. Furthermore, it is non-singular, i.e. if gu,v) = 0 for every
vector v € ¥, then u = 0. Indeed, by substituting v = e, we obtain g(u,e)
= c*7(u) = 0, so u S. In S, however, g is identical with the scalar product
—h, which is non-singular. We have thus shown that the only vector perpen-
dicular to all vectors in ¥, in the sense of the scalar product g, is 0. The essen-
tial difference between g and 4 is that g is not positive-definite (or negative-
definite), i.e. the equality g(u, u) = 0 does not imply u = 0.

We thus have the following geometric elements in spacetime E:7, h and e.
Alternatively, it is sufficient to give v and g. Indeed, we can then define e
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as a vector satisfying the conditions 7(e) = 1 and g(e, e} = ¢, and define &
by transforming the identity defining g. Similarly, an equivalent set of infor-
mation about spacetime is provided by e and g. This spacetime, which should
bear the names of Maxwell and Lorentz, constitutes a model for the descrip-
tion of mechanical and electromagnetic phenomena. To describe mechanical
phenomena in this model, = and % are sufficient. The scalar product g, on the
other hand, turns out to be sufficient for the formulation of vacuum electro-
dynamics.

The step made by Einstein was that, of all these geometric elements, he
only left the scalar product g in his model of spacetime. Einstein’s theory,
called the special theory of relativity, is the description of the properties of a
spacetime which is a good “background” for all physical phenomena except
those related to gravitation.

We say that the scalar product g has the signature (+, —, —, —) if there
is a basis (e, €1, €5, €3) (the basis vector e, has been replaced by the vector
e, = e,/c) such that the matrix g;; = g(e;, ;) becomes

I, i=j=0,
8ij = ""1: i=j=1a273:
0, i#]J.
A basis having this property is called orthonormal.

Let us express vectors u, v € V in this basis: u = u'e;,v = v'e;. The scalar
product of # and v can then be written

gu,v) = g u'v! = u®-2°%—u-v,

where u and v are defined by () = (1°, w) and (v') = (#°, v), and the symbol
u - v denotes the ordinary scalar product in three-dimensional Euclidean space
R3,

Expressed relative to the orthonormal repére (0, e;), an event p can be written

p = cleg+Xxe;+ye,+zes+0.

The zero coordinate has the form ct; here ¢ is time with respect to the given
orthonormal repére (o, ¢,).

Minkowski space (affine) is a three-tuple (E, V, g), where (E, V) is a four-
dimensional affine space and g a scalar product in ¥ with signature (4, —, —,
—). The pair (V, g) is called Minkowski vector space.

Minkowski space is the model of the special theory of relativity. This means
that, from the mathematical point of view, the three-tuple (£, ¥, g) is the
basis for almost all that comes under the name of special relativity. Why we
say “almost” will become clear later.

Given a mathematical structure, one should study its automorphisms.
Before, we investigated automorphisms of Galilean spacetime, called Galilean
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transformations. Now we shall consider automorphisms of Minkowski space-
time, called Poincaré transformations.

A Poincaré transformation is a pair of bijections f/:E — E and A1V — ¥,
such that
W Ap+uw) =f(py+iw foranyuecV,pek,
(2) A is a linear mapping,
(3 g(Asu, Apv) = g(u, v), (ve V).
J; is determined by f (as suggested by notation) and is called a Lorentz
transformation. Often an alternative terminology is used, in which f is called
a Lorentz transformation and 1, a homogeneous Lorentz transformation.

Poincaré transformations are automorphisms of Minkowski affine space,
while Lorentz transformations are automorphisms of Minkowski vector
space. Poincaré transformations constitute a group, called the Poincaré group.
We shall denote it by Aut(E, V, g). Similarly, we have the Lorentz group,
Aut(V, g). It is readily shown that Ay or = As ol , so that the mapping
AAut(E, V, g) - Aut(V, g) is a homomorhpism of the Poincaré group onto
the Lorentz group.

An example of Poincaré transformation is provided by translation. With
a vector v € V' we associate a mapping #,:E — E such that »,(p) = v+p for
any point p € E. It is easy to see that x, is a Poincaré transformation such that
the corresponding Lorentz transformation is the identity map in V. We note
furthermore that x, ,, = Hy, 0 #, , $O the mapping »:V — Aut(E,V,g)
is a (one-to-one) group homomorphism, if ¥ is treated as a group with respect
to addition. We thus obtain a sequence of homomorphisms:

0 V5 Aut(E, V., g) > Aut(V, g) — 1.

This sequence is exact, i.e. the image of the homomorphism # coincides with
the kernel of the homomorphism A. It turns out that the Poincaré group is
a semi-simple product of the vector group ¥ and the Lorentz group. The Poin-
caré group is the subject of intensive study by physicists, the reason being that
almost all elementary particle kinematics can be reduced to the investigation
of the properties of this group.

Vectors in ¥ can be classified according to the sign of their scalar product. If

> 0, uiscalled a timelike vector,
glu,u){= 0, uis called a null vector,
< 0, uis called a spacelike vector.

On this basis we classify other geometrical objects in Minkowski space.
We say, for example, that two events p and ¢ are timelike (or null, or space-
like) relative to one another if the vector p—g¢ is timelike (null, spacelike).
All null events relative to an event p € E form a cone, called the null (or light)
cone of p, which divides the remaining part of spacetime into three disjoint
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Fig. 6.3

regions (Fig. 6.3). Two of them contain timelike events relative to p, and one,
spacelike events. The timelike regions are the interiors of the two sheets of
the null cone. We call one of these regions the future and the other the past
of the event p; we also include in the future and in the past the corresponding
sheets of the cone.

Events which belong to the future of the event p (and only these events)
can be reached from p by moving with a velocity not exceeding the velocity of
light. The event p can only be reached from its past, if we restrict ourselves to
motions with velocities less than the speed of light.

Events lying outside the null cone of the event p (i.e. events spacelike
relative to p) do not stand in any causal relationship with p if only velocities
less than ¢ are considered, so we call this region “clsewhere”.

The separation of the future from the past is a new element in our math-
ematical model of special relativity. We now have the complete model: the
time-oriented Minkowski space. Temporal orientation enters into the funda-
mental laws of physics in a more discrete way than the scalar product g. More
specifically, the temporal orientation does not intervene in the fundamental
equations of physics themselves but only in the boundary conditions. Its
intervention in electrodynamics, for example, manifests itself in that we accept
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the so-called retarded solutions of wave equations and reject the advanced
solutions. In other words, we only allow the forward propogation of light in
time, as shown in Fig. 6.4,

Among curves in E we distinguish timelike curves, null curves and spacelike
curves. A timelike curve is a curve whose tangent vector is timelike at every
point; null and spacetime curves are defined similarly. Analogous distinctions
can be introduced for submanifolds of E with dimensions higher than 1.

As the first law of dynamics tells us, the world-lines of inertial observers
are straight lines in E. The question arises whether they can be arbitrary lines.
Suppose that the world-line of an observer O is spacelike. Then there exists
an event p such that no event on this world-line lies in the future of p; similarly,
there is ¢ such that the world-line of O does not pass through the past of q
(Fig. 6.5). Observer O has no possibility of sending a light signal to g and, worse

Fig. 6.5

still, he will never find out what happened at p (assuming he only uses light
signals, or other signals with a speed not exceeding c).

If we agree that, in the end, all information about the external world is
received through electromagnetic signals, we may assert that the world is not
cognizable for the observer O, which appears to contradict experiment. Hence
we conclude that there are no inertial observers with spacelike world-lines.
Similarly we come to the conclusion that the world-lines of inertial observers
cannot be null straight lines. It follows that the relative velocity of two inertial
observers must be less than c.

The introduction of time orientation in spacetime establishes a temporal
order among timelike and null events. No such order is possible among space-
like events. Every observer can tell whether an event p is earlier, than, simulta-
neous with, or later than another event ¢. But if p and ¢ are spacelike relative
to each other, there will always be some other observer who will see these
cvents in a different temporal relationship.

Are motions with spacelike world-lines, i.e. motions with velocities greater
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than c relative to an inertial observer, possible? The theory of relativity does
not give a categorical negative answer to this question.

Consider a light source S enclosed in a spherical shield of radius » with an
aperture drilled in it. Let the shield rotate and the light beam fall on a spherical
screen of radius R (Fig. 6.6). The angular velocity of the light spot on the screen

Fig. 6.6

is equal to the angular velocity of the shield a moment earlier. The ratio
of the linear velocities of the light spot and the shield will therefore be
R/r. Thus the velocity of the light spot on the screen can be arbitrarily large.
This fact does not present any theoretical difficulty since the motion of the light
spot does not involve transmission of energy or information.

Most physicists believe that fachions—hypothetical particles moving faster
than light—do not exist. The existence of such particles, carrying energy or
information, would lead to conclusions contradicting the principle of causal-
ity.

Imagine that an observer O sends a tachion which moves with a velocity
v > ¢ and that this tachion hits an observer O’ moving with a speed V > ¢?/v.
Consider two events p and ¢ on the tachion’s world-line, with p earlier than ¢
from the point of view of O. To observer O’, the event p will occur later than g.
Thus no cause-effect relationship independent of the choice of observer can
be identified between p and ¢. In particular, this applies to the transmission
and reception of the tachion. Observer O’ will assert that it was not him who
was hit by the tachion but, on the contrary, that it was he who sent it. The
assumption that the tachion could carry energy or information leads us to
paradoxical conclusions.

We shall assume that transmission of energy and information with velocities
greater than ¢ is not possible. From this it follows immediately that there

T
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are no bodies ideally rigid. For suppose that a force is applied to one end of
a “rigid” rod with a rest length /. This end will move with an appropriate
acceleration, whilst the other end will continue to be at rest for a period of
time 7, not less than //c, necessary for the information about what happened
to the first end to reach it (Fig. 6.7). Thus we can only speak of rigid bodies
when no forces act upon them, that is when they are in uniform and rectilinear
motion. Hence the difficulties with rigid measuring rods in the early formula-
tions of the theory of relativity.

The question of rigidity comes up in a certain well-known “paradox”.
Imagine a rod of rest length /, moving on a horizontal plank towards a hole
with the same rest length. Suppose that the velocity of the rod is large enough
for the relativistic length contraction to be significant, for example Ilet

y/1—p* = 1/10. A cursory conclusion from the contraction formula may be
nonsensical: from the point of view of the plank the rod should fall into the
hole, while from the point of view of the rod, it will not fit into it (Fig. 6.8).
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Fig. 6.8

In the light of our critical reappraisal of the concept of rigidity, the expla-
nation of this “paradox” is not difficult. The immediate cause of the rod’s
falling into the hole is the force of gravity, and since a force is present the
concept of rigidity no longer makes sense.
It is difficult to give an unequivocal answer to the question what will happen
to the rod. The formulation of the problem leaves considerable freedom in the
choice of parameters. The thickness of the plank and of the rod and their
elastic properties will play a significant role even at low velocities. To describe
the problem mathematically, we would first have to develop a mathematical
model of elasticity in accordance with the theory of relativity. One may sup-
pose that even a very long rod will bend, irrespective of velocity, and fall into
the hole or strike its far edge, if both the rod and the plank are sufficiently thin.
That the description of the rod’s falling into the hole is possible from the
point of view of different reference frames can be verified by using the follow-
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ing idealization of the rod’s motion. Assume that the hole has a cover which
is removed—all its points simultaneously in the plank’s reference frame—the
instant the back end of the rod reaches it. Then the motion of every point
of the rod in the plank’s frame will be an ordinary projectile motion in a ho-
mogeneous gravitational field, and the rod will maintain its shape in this frame.
In the frame in which it was initially at rest, however, the rod will be bent [41].
We encourage the reader to carry out an appropriate Lorentz transformation
and give a description of the rod’s motion in this frame.

The history of a material point is a curve in E. When E was Galilean space-
time, we parametrized such curves using the absolute time . Now E is Min-
kowski spacetime, and we have no absolute time but times relative to arbitrary
orthonormal repéres. Let us recall that an event p € E in the history of a ma-
terial point can be written relative to a repére (o, ¢;) as

p = x'(t)e;+0o,
where x° = ct, x* = x(t), x* = y(¢), x> = z(¢) (Fig. 6.9). We want parametr-

13

Fig. 6.9

ization independent of the choice of repére but determined solely by the geo-
metrical elements of special relativity spacetime. An appropriate parameter
is provided by the arc length s measured along the world-line by means of the
scalar product g. Let us find the relation between the length s and the time ¢
relative to repére (b, ;). In the basis (e;), the tangent vector to the world-line

has the form
dxt dx dy dz
("‘af) - (C’HT’ a0 “&7’) =@,
and its length is

Vel (eI &] s

Hence the arc length as a function of ¢ is given by

t

s(t) = Scl/]—%dt',

to




which can also be written as

ds
dr

The parameter s is called the proper time. The name derives from the fact
that for v = 0 we have s(t) = c¢(f—1,), and therefore the proper time of
a material point at rest relative to an inertial observer coincides (up to the
constant factor ¢) with the time measured by the clock of that observer.

We can now give a definition of an ideal clock: An ideal clock is one which
gives the proper time along its world-line irrespective of its motion. In Nature
such clocks do not exist; we can only construct physical systems which approxi-
mate ideal clocks under given circumstances.

Looking back to the twin paradox, we can now describe it in a more realistic
fashion: instead of approximating the world-line of the travelling twin by two
straight line segments we shall leave it as a smooth curve (Fig. 6.10). Assuming

Fig. 6.10

that the biological clocks of the twins measure their proper times, we may
conclude that the famous “paradox” follows from the inequality

L5 B iy

Scl/ 1~i;—dt' < | ear,

ty ty

where the equality occurs only when v = 0. Of course the human “biological
clock” is not ideal; the aging process depends on many factors, including

_the acceleration to which one is subjected, so the anecdote about the twins

_ should not be taken too literally.

. In employing the proper time, we act in accordance with Einstein’s rela-
 lvity principle, because we do not distinguish between inertial observers. The
_ World-lines of material points will be parametrized, therefore, by the proper
_time 5. In this parametrization, the tangent vector, which we shall call the

_ velocity four-vector, or four-velocity, can be expressed in terms of the velocity

relative to a given inertial reference frame as follows:




A 1 v/e
(u)“(ds) (1/1——7)2/c2 ’ 1/1__7,2/02)'

Among tangent vectors, the four-velocity stands out as the one normalized
to unity;

glu, u) = giuw = 1.

The counterpart of acceleration in special relativity is the four-acceleration‘wi
defined by
wi = du’/ds.
This four-vector is orthogonal to the four-velocity, since by differentiating
the identity g;;u'u/ = 1 we obtain 2g;;u'w’ = 0. At velocities small compared

with the speed of light, i.e. in a non-relativistic approximation, the four-accel-
eration reduces to

W) = (0, “gaz“)
How shall we define, in the relativistic framework, uniformly accelerated
motion? The constancy of acceleration in any given inertial frame would lead,
after sufficient time, to a velocity exceeding the velocity of light. The require-
ment that the acceleration four-vector be constant, on the other hand, cannot
be reconciled with the unit norm of the four-velocity. We are forced to reject
these two simplest possibilities. We note, instead, that at any instant of time
the moving particle is at rest with respect to an observer whose world-line is
tangent to the particle’s world-line at that instant. In other words, at every
instant of time the particle is at rest in some inertial frame. A uniformly
accelerated motion will be defined as follows: it is a motion whose world-line
is flat and whose acceleration relative to the instantaneous rest frame of the
particle is constant.
Since the world-line is flat, there exists a rectilinear coordinate system such
that it lies in the plane x°, x'. The velocity four-vector can then be written

u(s) = (coshg(s), sinhe(s), 0, 0),

and the four-acceleration takes the form

W(S) = %? (Sinh(p, COSh(,‘O, 0: 0)'

Relative to the instantaneous rest frame of the particle, the square of it
acceleration, ‘

a? = —ctg,wiwl|

should be constant. Thus, in uniformly accelerated motion, the four-accelera~
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tion has constant length. As a result, we obtain a differential equation for the
function ¢, from which we find

a
p(s) = ?s.

i

. . dx ; . . .
Integrating the equation g = after a convenient choice of coordinate

origin we obtain the parametric equation of the world-line:

¢ . . as
ts) = - sinh e

as
x(s) = -— cosh —-.
¢
We can see that
4
C
2 242 __
x —C t — *E—’
a

.
A
P <

x2-Ulaglsg?
x >0

Fig. 6.11

In the chosen reference frame the trajectory of the motion is a straight
line; in other inertial frames it will be a hyperbola, and not a parabola as in
the non-relativistic case. The non-relativistic description approximates the rela-
tivistic one well if the duration of the motion is much less than ¢/a.

As we look at Fig. 6.11, we notice that an observer moving with uniform
acceleration cannot send any information to the spacetime region defined by the
inequality ¢z < — x. Neither can he receive information about events such as p
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shown in the figure, for which ¢t > x. Because of this, we call the hyperplane
¢t = x the event horizon of that observer.

In Galilean spacetime the four-velocity u'(i' = dx /dr) satisfies the equation
7(u) = 1. The velocity space {u e V:v(u) = 1} is a three-dimensional Euclidean
space (Fig. 6.12). It is an affine space for which the vector space S < V is the

N

Fig. 6.12

space of translations. Owing to the existence of the scalar product & in S,
a Euclidean distance is defined in it.

In Minkowski spacetime the situation is somewhat different. Here the
four-velocity u(u' = dx'/ds) satisfies the condition g(u,u) = 1, so that u®
=+ 1+u?, and we have ° > 1 or #° < —1. Assuming, furthermore, that
spacetime is temporally oriented and restricting ourselves to future-pointing
velocity four-vectors, we can define the velocity space in special relativity as

{wueV:glu,u)=1and «° > 1}.

This set is a three-dimensional Lobaczewski space, i.e. Riemannian manifold
with constant negative curvature (Fig. 6.13). It can be shown that the distance
between two points in this space is o(uy, u,) = arcoshg(uy, u,). This formula

()(U1,U2}
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is analogous to that for the distance between two points on the surface of a unit
sphere, where we have g(u,, u,) = arccos(u, - u,). The surface of a sphere is
a manifold with a constant positive curvature (Fig. 6.14).

Imagine that an inertial observer Oy, whose world-line intersects the
world-line of another observer O,, sends a light signal to that observer (Fig.
6.15). The vector au,—u, is a directional vector of this signal, and therefore

0, g,

Fig. 6.15

a null vector. It follows that

a?+1—20gu, u,) =0

1 1
gluy, uy) = '5(054‘ "‘(;)-

o{uy, u,) = artanhf.

If u;, u, and u; are in one plane (Fig. 6.16), we have

Fig. 6.16
Q(ul 3 u2)+@(u2’ u3) = Q(ul ) u3)a
(assuming o(u, , us) is the largest of the three distances). Considering that

_’E?.l’lh x+tanhy
1-+tanhxtanhy

Wwe obtain the known formula for the addition of velocities.

tanh{x+y) =
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A large part of relativistic kinematics consists in applying the results of the
geometry of Lobaczewski spaces. The above derivation of the velocity addition
formula is one illustration of this application. It is interesting to see how optical
phenomena come into play: light rays correspond to the absolute elements

(“infinitely distant”) in this geometry.




CHAPTER 7

The Lorentz Group and the
Shape of Bodies in Motion

We shall now consider the geometry of optical observations. On this occa-
sion, we shall analyse important properties of the Lorentz group. We shall
consider idealized optical observations. We shall assume that they are made by
an inertial observer O using a photographic plate having the shape of a sphere.
This plate is exposed for a while at a time ¢. It bears the traces of events on the
cone of the past, which contains the sphere at the moment of exposure and has
its origin on the world-line of 0. We should note that the recorded events are
not as a rule simultaneous. The plate of an inertial observer O moving with
respect to O has its world-cylinder inclined relative to the latter (Fig. 7.1).

¢} 0 o’

World-cylinder
of photographic plate

Fig. 7.1

We expose it at such a moment that the top of the cone in question is the point
of intersection between the world-lines of O and O’. To analyse the relation
between what has been recorded on O's plate and what will be registered on
that of O’ (Fig. 7.2), we must turn to mathematics.

Any basis e = (¢;) in a Minkowski vector space determines an isomorphism
e: R* — V, such that

e(uw) = u'e;, where u =4 eR%.
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If the basis e is orthonormal, the scalar product 7 in R* induced by g, has the
form (in this chapter ¢ = 1)

Fig. 7.2

7w, v) = v? = 12=x>~y? 2%

where v = (¢, x, v, z). Later on, instead of Minkowski space (V, g), we shall
use the space R* with the scalar product 7, bearing in mind that this procedure
singles out a certain basis in V.

The plan of our further considerations is as follows. We shall try to ﬁnd
the different relations between various spaces and also those between the groups
acting in them. It will be found that we can replace the relatively complex
section of the Lorentz group in the set of light rays by the action of the homo-
graphy group in the complex plane, which is easier to describe. Knowing the
properties of the latter group, we can draw conclusions about the Lorentz trans-
formations. First, we shall consider a stereographic projection (Fig. 7.3).

Fig. 7.3

It consists of mapping a sphere onto the complex plane complemented with
a point “in infinity”. We assign

and
=00, f z=1,

to a point on the sphere characterized by the numbers x, y, z which are related
by the equality x*+y*+z% = L.
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The stereographic projection is a bijection. Using the equality xdx + ydy+

+zdz = 0 we have
= dx*+dy*+dz?
dfde = =

We see that the metrics on the sphere and the complex plane are proportional
to each other. We say that the stereographic projection is a conformal map.

Conformal maps are characterized by the fact that, although they do not
preserve the distances (as they are not isometries), they preserve the angles.
The angle between two curves on the sphere is equal to the angle between the
projections of these curves onto the plane. The stereographic projection
transforms circles on the sphere onto circles on the plane, or, if the circle
crosses the point x = 0,y = 0, z = 1, onto a straight line. »

We shall now discuss the relation between R* with the scalar product %
and the set H of second-degree Hermitian matrices. We define the mapping
o:R* -» H,

t+z x—iy
U(t,y,y,2)=(x+iy t__z)-

We can readily see that the image of any vector v = (¢, z, y, z) under the
mapping o is indeed a Hermitian matrix o(v) = o(v)t. The mapping o is an
isomorphism of vector spaces. An interesting property of this mapping is that
the determinant of the matrix o(v) is equal to the scalar square of the vector v,

deto(v) = 22

In passing, we can note something about the basis in the vector space H.
Namely, the basis singled out by the mapping o is the image of the canonical
basis in R*:
g(1,0,0,0) = 1,
0(0,1,0,0) = o,
a(0,0,1,0) = g,
0(0,0,0,1) = a,.

The matrices oy, 0,, 6, are called Pauli matrices. They were introduced to
describe the electron spin.

Let SL(2, €) denote a group of unimodular (with the determinant equal
to 1) complex matrices of the second degree. If U e SL(2,0C) and 4 e H,

then also UAU™ € H, because

(UAUD = (UDANUY = UAU™.

Moreover, the mapping 4 ~» UAUT is an automorphism of the vector space H
and det(UAU™) = detA. Just to ensure the latter equality, we require that
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the matrix U be unimodular (it is sufficient here that the module of the de-
terminant U is equal to 1). Due to the fact that the transformation of H by
means of the matrix U and the mapping o are isomorphisms, there exists
a unique real matrix k(U) of the fourth degree, such that for each v ¢ R*
we have

Uo(@) UT = o(R(U)2).
Since U is unimodular, k(U) preserves the scalar product in R*, therefore,
k(U) is an element of the Lorentz group L = Aut(R*, n). The mapping
k: SL2,C)-> L
is a group homomorphism, as we have
o (k(U,U)v) = U, U, 0(0) (U, U)" = U, U,0(v) UL UT = o (k(U)k(U)v).

In connection with the introduction of the homomorphism & we now make
a few remarks about the topological properties of the Lorentz group.

Writing the vectors ¥ = (#') € R* and v = (v') € R* in the form of columns,
we can represent their scalar product as

n(u,v) = u'no,

where 7 is the so-called Minkowski metric matrix

1 0
-1
-1
0 -1

(We hope that the fact that we denote them etric matrix and the scalar prod-
uct by the same symbol does not cause any misunderstanding). The Lorentz
group L = Aut(R*, n) consists of real 4th-degree square matrices / satisfying
the conditions

ATpd = 9.

Such matrices are called Lorentz matrices. Taking the determinant of both
sides of this equality, we obtain that (detA)? = 1, therefore

detA =1 or detd = —1.

The Lorentz group consists of two subsets: the subset L, which consists of
matrices with the determinant equal to +1, called proper Lorentz matrices
(transformations), and the subset L_, containing improper Lorentz matrices,
i.e., those with the determinant equal to —1. The subset L, of the Lorentz
group is its subgroup, called the proper Lorentz group. The proper Lorentz
transformations preserve the orientation in Minkowski vector space.
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The 00-component of the algebraic condition defining Lorentz matrices
has the form

(/100)2 - (A10)2 - (/120)2 - (/130)2 =1,
therefore (Ag0)? = 1. We see thus that two cases can exist:
./10021 or A00< "“1.

If Ao = 1, the Lorentz transformation corresponding to the matrix 4
preserves the time orientation, i.e. it transforms vectors directed to the future
(timelike and null vectors) into those directed to the future, and vectors di-
rected to the past into those directed to the past. If Ay, < —1, 4 changes the
time orientation of timelike and null vectors. Thus, the Lorentz group consists
of the subsets L' and L, containing transformations which preserve the time
orientation and those which change it respectively. The subset L' of the Lo-
rentz group is its subgroup, called the orthochronic Lorentz group. It is
a group of automorphisms of Minkowski vector space with time orientation.
The Lorentz group is the disjoint sum of four components:

Ll = L nL", proper orthochronic,

L} = L,nL}, proper antichronic,

L = L_nL", improper orthochronic,

Lt = L_nL*, improper antichronic.

These four components are connected, which means that any two points
belonging to one of the components may be connected by a curve which lies
within this component. The connected component of unity L} is a subgroup
of the complete Lorentz group, called the proper orthochronic Lorentz group.
Since SL(2, C) is a connected group and the homomorphism % is continu-
ous, the image of the group SL(2, €) under the mapping k& must be contained
in LI. To be exact, this image coincides with L}, k(SL(2, C)) = L1. We can
readily see that

k(-U) = k(U),

and we can also demonstrate that the question of sign is the only ambiguity
in choosing U, if k(U) is given. In this way, we can show that the sequence of
homomorphisms

Z,->SL2,0© -I—; L!
i

1s exact, Here, we denote Z, = {I, —1I}, while i is the natural injection of Z,
into SL(2, ©). In other words, SL(2, C) is an extension of the group LI.
We can also show that the unimodular group is the minimal simple connected
extension of the proper orthochronic Lorentz group. ‘
We have discussed the isomorphism between (R*, ) and H, and the rela-
tion between groups acting in these spaces, namely L! and SL(2, C).
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We now introduce the notions of projective spaces and projective quadrics.
Let ¥ denote a vector space over the field of real numbers (without any greater
modifications, we can apply this definition to vector spaces over the field of
complex numbers). Let 0 ¢ v € ¥; we will then call

d(v) = {Av:0 # e R}

the direction of vector v, i.e., vectors which are proportional to one another
have the same direction. The set of directions P(V) = {d(v):0 £ v eV} is
called the projective space determined by V. If a scalar product g is given in V,
we can define the quadric N(V), i.e. the set of null directions, in the following
way:

P(V) > N(V)= {d(©):0 #veV and g(v,v) = 0}.

If, in particular, we take R* and #, we can form N(R*), while taking H and the
scalar product generated by the determinant, we can construct N(H). The
mapping o determines the bijection N(R*) — N(H). Let us investigate the
structure of the set N(H). We have d(4) e N(H) if and only if 0 # 4 = A4t
and det4 = 0. Thus, we have two possibilities: either

10

A4 =(‘ 0), and hence 4 = A(O 0

), where 0 # A e R,

or
: ¢
1 1
When { — oo, the matrix of the second type tends to that of the first type
(to verify this, you need to choose A = A'/¢¢, where A’ = const). We thus have
a continuous bijection N(H) » € = Cu {co}, described by

10 9 2)
Let us, moreover, note that there exists a bijection of the two-dimensional
sphere S, onto the set of isotropic directions in (R*, #): Namely, if (x, y, z) €S,,

ie., if x?+y?+2z% = 1, then d(1, x, y, z) € N(R%).
We can now compose the three mappings

A=/‘1(: ),andhenceAzl( ),whereO;éZeR,CeC.

S, - N(R*) > N(H) - C,

according to the following rule

3
—_Z
o, z=1.

1+z x—iy)H 2;;*_}}’_ z#£ 1,

(x,y,Z)Hd(l,y,y,z)r-—»d(x_{_iy 1__2

We can see that this composition is a stereographic projection.
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Let us now consider the action of the group SL(2, €) in N(H), and how
it is transferred to €. Let U € SL(2, ©),

fa b
U:(C d)’ ad—bc = 1

e ¢
A‘(c 1)’

i.e., d(A) € N(H). Let us note that we can represent the matrix A as the prod-

uct of two vectors: ) |
a=(E )= Een-()E)

We can now factorize the action of the matrix U on 4:
s a7
ou - oflof)

al+b

U(i) - (Zgis) = (t+d) ?—;7 . i dd £ 0;

o) =)

We can thus see that the matrix U induces in € a mapping jy called a homo-
graphy,

thus, U acts as follows:

if, in turn, ¢ +d = 0,

al+b
Jol©) = ol +d

In this way, we have obtained the exact sequence of homomorphisms:
1 J

where PGL(2, C) denotes the homography group (i.e. the projective group).
Hence, we can easily obtain the isomorphisms of the following groups:

L! <+ PGL(2, C) « conformal group of the sphere S,, and also the
isomorphisms of spaces where these groups act (the spaces are homogeneous
with respect to these groups):

NRY o€ oS,

: Homographies, being analytical mappings, are conformal on C. Moreover,
homographies preserve the set of straight lines and circles on the complex
plane.
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We can now answer the question: what is the relationship between the im-
ages on the plates of the observers O and O’? Since both observers are inertial,
their celestial spheres N(R*) and N(R*%)’ are connected by the Lorentz transfor-
mation. These conformal transformations correspond to the 8, and S;,
obtained according to the previously given rule. We can thus conclude that
the image of a circle on the plate is always a circle [38)]. Therefore, it is not
true that the wheels of a bicycle moving very fast relative to the observers
look like ellipses [50, 58]. Such statements can be found in certain books pop-
ularizing the theory of relativity, e.g., in an otherwise splendid little book
by Gamov, Mister Tompkins in Wonderland [23].

We have gained a convenient way of classifying Lorentz transformations:
we can do it by classifying homographies. Let us consider how many direc-
tions on a cone can be preserved by a Lorentz transformation. This is equiv-
alent to the question: how many solutions does the following equation have

al+b
ct+d

After transformations we obtain the quadratic equation
4+ (d—a)l—b =0,

=7

whose discriminant

4 = (d—a)?*+4bc = (a+d)*—4
defines the number of directions on the cone which are preserved. If 4 # 0,
two directions are preserved. If 4 = 0, one direction is preserved, except in the

case b =c=0, a=d= +1, when all the directions are preserved (the
appropriate Lorentz transformation is then an identity).

The complexification of a real vector space. If ¥V is a real vector spaéé
we can assign to it a complex vector space V. Considered as the set V°, this
space is the Cartesian product Vx V. Instead of writing (u, v) € VS, it is
convenient to use the notation u+iv € ¥C. The addition of vectors in V< is
then given by the formula

(uy +101) + (up +102) = uy +up +i(v;+9,),
while multiplication by complex numbers is given by

(e+ib)(u+iv) = au—bv+i(av+bu).

The complex dimension of the space V< is equal to the real dimension of the
space V.

The space V€ has a richer structure than an ordinary complex vector space,
since it allows the definition of real vectors, i.e., vectors of the form u-+i0,

imaginary vectors of the form O+iv, and the complex conjugation: u-+iv
= u—io. E
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We can apply the above complexification procedure to the Minkowski
vector space V. We can generalize the action of the scalar product in this space
to cover complex vectors, according to the formula

glus +ivy, U +iv,) = gluy, ux)—g(v,, v2) +i(g(uy, v2) +g(v,, us)).

The space V< thus obtained, with the scalar product g, is called the complex
Minkowski vector space. The fact that the same letter is used to denote the
scalar products both in space ¥ and V'© should not cause any misunderstand-
ing.

Having the Lorentz transformation ¢:V - ¥V, we can determine the exten-

sion of this transformation to the complex Minkowski vector space V< denoted
by the same letter:

p(u+iv) = p(u) +ip(v).
The transformation ¢:¥© — V< thus defined preserves the scalar product in
the space V<.

In Minkowski space, we can introduce a real orthonormal basis (e, e,
e,, e3). Frequently though, it is more convenient to use the null basis (k, 1,
m, m), where the two vectors k and / are real and satisfy

gk, )= 1.
The other two vectors m and m are complex, mutually conjugate, and satisfy
g (m 3 ’ﬁ) = —] ]

while the remaining scalar products of vectors of this basis are equal to zero.

We can find that such a basis exists by constructing it from an orthonormal
basis in the following way:

m:A———.‘_

The null basis is particularly convenient for the analysis of Lorentz transform-
ations. We already know that the Lorentz transformation preserves at least
one direction on the cone. We can choose the vector k in such a way that it
points in this direction. Considering only those Lorentz transformations which
preserve the time orientation, we find that the coefficient of proportionality
between the vectors @(k) and k must be positive; therefore,

oK) = evk.
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Since the scalar product of the vectors @(k) and ¢(m) should vanish, there
is no term proportional to the vector / in the decomposition

p(m) = am+fm+vk.
Because ¢(m) should be a null vector, we have «ff = 0. Ignoring in these con-
siderations transformations which do not preserve the orientation, we can
eliminate the case o = 0; therefore,

g=0.

Next, we have
o) = p(m) = am+yk.

From the normalization condition g(p(m), p(m)) = —1, we obtain oa = 1;
therefore, we can write

o = el?,
It may now easily be found that the orthogonality conditions uniquely define
the vector ¢(J) as

p(D) = e~ Vi+e Pyyk+ye T TmtpeV " im,
Through simple, though rather tedious, calculations we can find that the

matrix U e SL(2, €) corresponding to the above Lorentz transformation has
the form

We know that the number of directions on the cone which are preserved is
determined by the quantity

AR

A:(e

Thus, one direction is preserved if and only if

e¥ =¢el? = 1.

Let us consider first the case when two null directions are preserved. We
can then further simplify the transformation formulae derived above, choosing
the vector / so that it shows the other preserved direction. In such situation
y = 0. Therefore, the general form of the Lorentz transformation preserving
two directions in this specially chosen basis is as follows:

pk) = ek,
o) =e7¥l,

p(m) = e¥m.




77

We can see that in-this case the Lorentz transformation consists of a special
Lorentz transformation in the plane ¢, z (y is a hyperbolic angle) and rotation
by an angle ¢ in the plane x, y which is perpendicular to the plane ¢, z. Trans-
formations of this form make up a two-parameter Abelian subgroup of the
Lorentz group.

Let us now consider a case where only one null direction is preserved. The
general form of the Lorentz transformation (with a specially chosen vector &)
is then as follows:

pk) =k,
o) = l+yyk+ym+ym
p(m) = m+yk.

Let us note that this Lorentz transformation preserves not only the chosen
direction on the cone, but also the vectors pointing onto this direction. Let
us note that transformations of this form also make up a two-parameter
Abelian subgroup of the Lorentz group. It is interesting to observe that the
above transformations are symmetries of plane electromagnetic waves.

We can write the matrix /4 of any Lorentz transformation in the form

A = eF,
where the matrix B = (B)), after lowering the upper index by means of g;;,
is antisymmetric, B;; = —Bj;. We define the exponential function of the

matrix in the above formula by means of the series

This series is convergent for all matrices B.

In general, the above series contains an infinitely large number of terms.
This is particularly so if we deal with a Lorentz transformation which pre-
serves two null directions. In such a case, the matrix 1 in the basis (k, /, m, m)
has the form

e 0 0 0
A= 0 e¥v0 O

0 0 €290 ’

0 0 0 e

while the corresponding matrix B is as follows:

vy 0 0 0
10—y 0 0
8= 0 0 ip O
0 0 0 —ip
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The case is different for a Lorentz transformation which preserves only one
null direction. Here, the matrix

whose third power vanishes, corresponds to the Lorentz matrix

;

Therefore, only the first three terms remain in the series e®. Let us also
remark that in this case we can write the matrix B in an invariant form

B = s'k;—s;k".

k' is the well-known null vector preserved by the Lorentz transformation
under consideration, while s* is a real spacelike vector, which is orthogonal
to the vector k, and which can be defined by the formula

§ = ym+ym.

The vector s is determined by the Lorentz matrix A to within the transform-
ations s — s+ Ak, A € R,




CHAPTER 8

Particles and Fields in Special
Relativity Theory

The relativistic equation of the free motion of a material point is an equation
of a straight line and therefore can be written

d2x

ds*
Since straight lines are curves for which the arc length attains an extremal
value, the above equation is equivalent to the variational principle

= 0,

o S constds = 0.

world-line

Choosing const = —mc and using the relationship ds = ]/ 1—902/c?cdt, we
obtain the relativistic Lagrange function '

L= —m?y1—v?/c* = ——mcz+é— mo?+0(1/c%).

We can see that, to within a small of order 1/¢2, this function differs from the
non-relativistic Lagrange function $mo? only by a constant.
The generalized momentum corresponding to the relativistic Lagrange
function is given by
oL my
P="0v V1—0%/c?’
and the energy by

-mc?

Y1—02/c?
Together, the energy and the momentum form the energy-momentum four-
vector

E=p-v-L=




dx® mo*

ds  Yi-vfje

O

P = mc

so that (p") = (E/e, p).
It is now convenient to introduce the concept of relativistic mass,

for then the expression for momentum will take the form
P = MV
analogous to the non-relativistic relationship between momentum and vel-

ocity. In terms of the relativistic mass, the energy is expressed by Einstein’s
famous formula

E = mg, c*
The mass m is called the rest mass, since at zero velocity the relativistic mass is
identical with m: m (v = 0) =
The fact that the velocity four-vector is normalized implies that the energy-
momentum four-vector is also normalized:

gijpipj = m*c*;
hence we obtain the following relationship between energy and momentum
E? = m2c* +p2c.
Using the formula for the relativistic mass and the relationship between
this mass and energy, we can express the energy E in a different form:

1 1
E = mc®+ ~i~—m7)2+0(-c-5-).

Thus, up to a small of order 1/¢?, E differs from the energy 4 mo? of a free ma-
terial point in Newtonian mechanics by the term mc? The quantity mc? is
called the rest energy. Contrary to what may at first sight seem possible, the
rest energy cannot be separated out from the total energy, for such a possibil-
ity would contradict the principle of relativity. Indeed, to carry out such a de—
composition, one would have to select an inertial frame.
We will now present the equations of motion of a particle with charge ¢
in an external electromagnetic field. This field is described by a four-potential
= (4;) = (p, A). The quantity directly measured in experiments is the
electromagnetzc field tensor

Fi; = 0A4;/0x'— 0A,/9x.
The field tensor satisfies the Maxwell equations

J 4 .
lj —r
dx F PR
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The form of these equations is identical in every inertial frame, in accord-
ance with Einstein’s principle of relativity. The first equation relates the field
with the sources; j' is the current density four-vector, (j*) = (co, j), where o
is the charge density and j the current density vector. The second equation
ensures the existence of a four-potential for the field, but does not determine
it uniquely. Adding the gradient of a function to the four-potential,

A, A+ 0y [0xE,

does not change the field F;;. This is the only freedom in the choice of four-
potential.

Corresponding to the field F;; in a given reference frame are the electric
and magnetic field vector, E = (&, E,, E;) and H = (H,, H,, H,), defined

by

Fij = 0‘

0 E, E, E,
-E, 0 -—H, H,
(F ij) - . Ey Hz 0 . Hx
-E, —H, H, 0
In terms of the vectors E and H, the Maxwell equations take the form
divE = 4mp,

1 J0E 4w,
curl H— 7 —57 = -?/]

divH = 0,

1 oH
curl E+ P T = (.

The metric tensor is used to lower indices, for example u; = g u*. Let us
introduce the contravariant metric tensor g/, defined by the equality

ik __ Nk
8:i;87% = oF.
This tensor is used to raise indices, as in FY = g g/'Fy;.

The form of the equations of motion of a charged particle consistent with
the principle of relativity is

dp’ q pij
o ST

Using the vectors E and H, we can also write this equation as

dp

ar qE+—~v><H
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The distribution of energy and momentum in a physical field or a con-
tinuous medium is described by means of the energy-momentum tensor T,
When integrated over a hypersurface 2 having a normal vector ;, it yields
the amount of energy and momentum flowing across 2 in the direction of the

vector Hj:
. 1 .
p:(Z) = ;’ STv”nde'.
z

Individual components of the energy-momentum tensor have the following
meaning in a given reference frame:
T0%—energy density,

1 .
— T*°—density of a-component of momentum,

T%—g-component of energy flux,
1
— T*—p-component of flux of a-component of momentum.
[4

1 .
For example, - T*? denotes the momentum component along the -x-axis

crossing a unit surface area perpendicular to the y-axis in unit time.
We will give two examples of the energy-momentum tensor. For a perfect

fluid, it has the form
TH = (o +p)uu’ —pg",
where u is the four-velocity of the fluid, ¢ its rest-frame density, and p its

pressure. In the fluid’s rest frame, in which (¥°) = (1, 0,0, 0), the compo-
nents of the energy-momentum tensor become

T = o,
T =
T = p&*f.

The energy-momentum tensor of an electromagnetic field is given by

4TCT” = —Fiijk‘{‘%giijlel.

The law of conservation of energy-momentum asserts that the total in-
flow of energy-momentum into a four-dimensional region 2 is equal to zero:

Cﬁ T"n;de = 0,
a0
where the normal vector n/ is oriented outward. In a special case, 2 may be

the region enclosed between two hyperplanes of constant time in some inertial
frame (Fig. 8.1). The hypersurfaces at spacelike infinity do not contribute




Fig. 8.1

to § T"n;do if the energy-momentum tensor vanishes rapidly enough (faster
a0

than 1/r?) at large distances. Hence we obtain the global law of energy-mo-
mentum conservation

S Tdxdydz = S Tdxdydz.
=1y =ty

The conservation law expressed by the previous formula is more genera),
since it also applies when the integrals over the timelike hypersurfaces of
Fig. 8.1 do not tend to zero on passing to infinity, that is when radiation is
present.

Converting the surface integral in the energy-momentum conservation law
into a volume integral, we obtain

J .. . .
S"E-xT TYdw = 0  for arbitrary region 2,
0

and hence a differential formulation of the law of energy-momentum con-
servation:

Jd .
e TH = Q.
ox?
The angular momentum density tensor J* is composed of an orbital part

and a spin part:
iy | R 1 ... .
Jik — _ 4xlTjk___ e ijuk+Sl]k‘
4 ¢

The spin density tensor S**, like the tensor J¥*, is antisymmetric in the first
two indices: SU* = — §iik,
The formula
Ji(Z) = {ritndo
P

defines the amount of angular momentum tensor that crosses the hypersurface
2 in the direction of its normal vector. Like energy and momentum, angular
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momentum obeys the conservation law, which in an integral form reads
$ Jikndo = 0,
a0
and in a differential form
a .
JUE = 0.
ox*

Combined with the differential law of energy-momentum conservation,
the last equation gives us a formula for the antisymmetric part of the energy-
momentum tensor

iy . 0 y
lj__Tn — o Uk.
T ¢ e S

We can see that when the spin density vanishes, the energy-momentum
tensor is symmetric. This happens for perfect fluids and for electromagnetic
fields.

The angular momentum tensor of a body is defined by

Ji = Jidxdydz,
t=const
where integration extends over the region of space occupied by this body.

If there is no ineraction between the body and the surrounding space, then the
angular momentum tensor, and also the four-momentum of the body

Ti%dxdydz
t=const
are conserved and hence independent of the hypersurface ¢ = const.
Let us note that under translation of the coordinate origin,

i

Xt = xt—d,

the four-momentum and the angular momentum tensor are transformed as
follows

pt=p,

J'H = JU—a'pl+alp'.

Suppose that we are given the momentum p' and the angular momentum J i,
Is it possible to determine the motion of the centre of mass, and so decompose
the angular momentum into orbital and intrinsic parts by analogy with the
nonrelativistic formula of rigid-body theory,
J=Rxp+tiw,

where R is the centre-of-mass position vector, p the total momentum, w the
angular velocity of the rigid body, and J the momentum of inertia tensor.
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We shall call the system U’ in which J'/ = 0, the centre-of-mass system.
According to the transformation law for the angular momentum tensor, the
position vector X ' of the origin of this system should satisfy the equation

JHp;—X'p'p;+ X'pp' = 0.
If ¢?m? = pp; # 0, the solution of this equation is

Jp,

i
X, = 2m?

4

+up',

where u is an arbitrary real number.

In this way we have defined, for a body with non-zero rest mass, the world-
line of the centre of mass. Its directional vector is the four-momentum. The
angular momentum tensor in the centre-of-mass system is called the spin
tensor, S = J''J. We can now write the formula for the decomposition of the
total angular momentum into the orbital and spin parts:

JY = X'pl—Xipt + SU,
Now suppose we demand that particles with zero rest mass, p/p; = 0, possess
centre-of-mass systems, i.e. that the decomposition of the angular momentum
tensor into orbital and spin parts be still valid for them, with §*p; = 0. For

particles of zero mass, the equation for the centre-of-mass position vector X*
takes the form

JUp;+Xp;pt =0,

which can also be written as

JUp, = Ap', Xp; = —A.

The first equation implies that the tensor J¥ is not arbitrary since it must have
the null vector p' as its eigenvector. The second equation asserts that the tip
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of the vector X’ should lie on a hyperplane orthogonal to the vector p’. Since p/
is a null vector, this means that the tip of X7 lies on a hyperplane tangent to
the light cones—tangent along the straight lines for which p is the directional
vector. This situation is illustrated in the right-hand side of Fig. 8.2; the left-
hand side presents the analogous situation for particles with non-zero mass.
From what has been said above it follows that particles of zero mass do not
have well-defined world-lines and therefore cannot be located. Furthermore,
their spin tensors are not uniquely defined since replacing vector X* by a diff-
erent “centre-of-mass” position vector in the decomposition of the angular
momentum tensor into the orbital and spin parts will in general give a different
value of S%.
Let &1 be the Levi-Civitd pseudotensor, i.e.
+1if i, j, k, I form an even permutation of 0, 1, 2, 3,
ek = y—Lif i, /, k, | form an odd permutation of 0, 1, 2, 3,
0 if two of the numbers i, j, k, [ are equal.
Let us introduce the Pauli-Lubariski (spin) pseudovector
S = 1 & P = }As-- i Sik
1 2 uklp 2 kalp -
In the rest frame of a particle of mass m > 0, in which ( p') = (me,0,0,0),
we have (S)) = mc(0, S,3, Ss31, S12); hence the name. For particles of zero
mass the pseudovector Sy is determined uniquely—it is independent of the
choice of tensor 7. In both cases S;p* = 0.
Multiplying the above equality by &7, we get

SgmPe = prSPa pPSIn 4 pIST,

When the mass of the particle is non-zero, we obtain a formula expressing
the spin tensor in terms of the spin pseudovector

1
I
SP9 = i3 S P "™,

and when the mass vanishes, we get

SiPme™t =0,
or
Slpm”Smpl = 0.

It is not difficult to show that the fulfillment of this condition, which implies .
the proportionality of the spin pseudovector and the four-momentum

Sl = 8Py,

is equivalent to the possibility of decomposing (not uniquely) the angular
momentum tensor of a massless particle into the orbital and spin parts.
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The pseudoscalar s is called the helicity of the particle. For the par-
ticles of zero rest mass existing in Nature, it takes the values: +# for photons
and-#1/2 for neutrinos.
In every inertial reference frame the angular momentum tensor JJ = — JiJ
defines two vectors: the angular momentum vector J = (J,3, J3,, J;,), formed
by the spatial components, and the moment of energy vector K = c(Jyy, Jos,
Jys), formed by temporal-spatial components. The relativistic law of angular
momentum conservation—the law of conservation of the tensor J*/—contains
two vector conservation laws. The law of conservation of the angular mo-
mentum vector is well known from classical mechanics; the meaning of the
k law of the moment of energy conservation is not so immediately clear. To
_interpret it from the point of view of classical mechanics, we should consider
3 body without spin, §*/ = 0. Then

K = RE—-*Tp,

where (cT, R) = (X*) is the centre-of-mass position four-vector. We can see
that the law of conservation of moment of energy is equivalent to the law
that the centre of (relativistic!) mass moves uniformly in a straight line. That
the motion of the centre of mass is uniform and rectilinear, or, that the centre-
of-mass world-line is a straight line, has already been established without
the assumption of zero spin.

Are the energy-momentum and spin-density tensors determined uniquely
by the distribution of matter? Consider the following transformation of the
energy-momentum tensor:

i j rij . 9
T‘IHT I o= TJ“{‘"W'AJ’{,

where A% = — A"* Note that, under this transformation, 7"/ satisfies the

law of energy-momentum conservation, as did 7%, After the transformation,
P'(2) - p''(2), where

i) = S T'in,do = S Tiin;do+ S-—;;,?A"f"njda = p(X)+ ngij"drjk.

z z z ax

The last integral has been converted from a hypersurface to a surface integral
by using the four-dimensional Stokes theorem; dr; denotes the oriented sur-
face element on 9.

If 4Y% vanishes on the boundary of the hypersurface Z, then ') = p' (D).
If we let X' be a hyperplane ¢ = const, then p'’ = p' if 4% tends to zero faster
than 1/r2 as r — co. In this case, therefore, the tensors 7%/ and 7"/ provide the
same information about the global amount of energy and momentum. How-
ever, they localize energy and momentum differently, since for an arbitrary
hypersurface X' (which can also be a part of the hyperplane ¢ = const) we will
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in general have p'*(X) # p'(&). The equality p'*(Z) = p'(X) for every hyper-
surface X would imply 7" = TV,

Let us perform the following transformation of the spin density tensor
together with the transformation of the energy-momentum tensor:

Sk s UK = Sk 1 ATk 1 Aikj+__?1_ Bk,
c c ox
where B/¥l = — BY¥ and B = - BU* Then, the angular momentum den-

sity tensor, JY¥, transforms to

J”ijk — 71“ xiT'jk__ _WIM ij’ik_;r_S'ijk — Jijk+ 7?7 Cijkl’
¢ c axt

Clkl — 1 X 4T I i 4K giikd
¢ ¢

Since CF# = — ¥ the tensor J'i/% satisfies the required property of anti-
symmetry in the first two indices. Since CY% = —C'* glso, we find that
J'UE gatisfies the conservation law, and therefore provides the same global
description of angular momentum as J'/* if the tensors 4% and B'/¥ die out
rapidly enough as r — oo — A4'/* faster than 1/r3, and B'/* faster than 1/r2.

The above transformations of the energy-momentum and spin density
tensors allow the energy-momentum tensor to be symmetrized. To this end,
ubstitute

AIE ;}(Sijk_sikj_*_skji)’

BUk = @,

The transformed energy-momentum tensor
. ¢ 0

TH =T —

) ox*

is symmetric, as follows from the formula for the antisymmetric part of the

tensor 7%/, while the transformed spin density tensor vanishes:
S’k = Q.

(Sijknsikj+Skji)

Let us note once more that the transformed energy-momentum and spin den-
sity tensors give the same global characteristics of energy-momentum and
angular momentum as the original tensors; however,t hey localize these physi-
cal quantities differently.




CHAPTER 9

Spinors

It was P. A. M. Dirac who introduced spinors into relativistic physics,
formulating the relativistic wave equation for particles with spin 7/2. In keeping
with Dirac’s postulates, this should be a first order equation, and after itera-
tion, yield the Klein-Gordon equation

2.2
(aiai+ J”ﬁf)zp =0,
which is a quantum-mechanical counterpart of the relation p? = m?c2. Briefly,
though not very accurately, we say that the Dirac equation is the square root
of the Klein-Gordon equation. Earlier, through group theory considerations,
E. Cartan had introduced spinors, while algebraic ideas related to spinors had
their roots in works by Hamilton, Clifford and Lipschitz. Here, we will derive
spinors algebraically,

Let us consider a real, or complex, n-dimensional vector space V with
a symmetric, nondegenerate bilinear form (scalar product) g. Our aim is to
construct an associative algebra 4 with the unity 1,, and a linear insertion
k:V — A satisfying the following condition:

kw)? = glu,u)l,.

Of the pair (4, k), we say that it is a solution of the Dirac problem. There are
many such solutions, but one of them is universal in nature.

Let (e;) be a basis of V. This basis generates a free algebra with unity, which,
s a vector space, is spanned by 1 and the products of the elements of the basis

€, .--» €, Wwhere k = 1,2, ... Next let us require that the products of the gen-
erators e; obey the rules

, ee;tee; = 2g;;.
In this way, we obtain the algebra CI(V, g), called the Clifford algebra associ-

ated with the pair (V, g). If ¥ = ule; and v = vle;, by identifying these vectors
with their images in the algebra C(V, g), we obtain

w-v+v-u = 2g(u,v),

which gives in particular u® = g(u, u). Therefore, the algebra CI(V, g), to-
gether with the mapping k(1) = v, is a solution of the Dirac problem. Although
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in constructing it we used a certain basis, the construction does not in fact
depend on its choice.

If the basis (e;) is orthogonal, its different elements anticommute. Therefore,
the basis of the algebra CI(V, g) consists of elements of the form

1,e,ee,ii <), eeei<j<k),..,e ..e,.
Thus, the dimension of CI(V, g) is 2"

The universality of the Clifford algebra consists in the following: if (4, k)
is a certain solution of the Dirac problem, there exists a homomorphism of
algebras, with unity f: CI(V, g) — 4, such that for each vector u, f(u) = k(u).

If u is not a null vector, there exists in the Clifford algebra its inverse
element #~* = u/g(u, u). Let v be an arbitrary vector. Let us consider the
expression

0u(v) = —uou~L.
Decomposing v into the parallel component v, and the component v,
perpendicular to u,

v=9,+v,,
we have
04(v) = = +9,.
Therefore, p,:V — V is a reflection with respect to a subspace orthogonal to
the vector w.
The Cartan theorem says that each orthogonal transformation is a compo-

sition of reflections. Thus, the general form of orthogonal transformations is
as follows:

o) = (=D ... u)o(uy ... w)™,

where u; satisfies g(u;, u;)) # 0,i=1,..., k.

Let us now deal for a moment with the case where V is a real vector space.
We can then, without loss of generality, deal only with the vectors u; for which
g(u;, u) = +1. Let Pin(V, g) = CI(V, g) be a set made up of all the elements
of the form

So= Uy .. ty,  glu,u) = 1.
We can readily notice that the product of two such elements is of this form,
while the inverse element exists and is also of this form. Thus, Pin(¥V, g) con-
stitutes a group.

Although the factorization of s into the product of k vectors and also the
number k are determined ambiguously, the parity of the element s, ie. the
number (—1)* = sgn(s), is determined uniquely. In fact, the space CI(V, g) de-
composes into the direct sum

C'(V: g = C’(V’ g)+ ®Cl(V, g~
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of the subspaces of the even elements CI(V, g)* and the odd elements
CI(¥, g)~. Moreover, the subspace CI(V, g)* is a subalgebra of CI(V, g).
Therefore, the orthogonal transformation g, defined by the formula

0,(0) = sgn(s)svs™
is subordinate to each element s of the group Pin(V, g). Furthermore,
05,° 0s, = 0s,s,> 50 the mapping s — g5 is a homomorphism of the group
Pin(¥V, g) onto the orthogonal group O(V, g).

What is the kernel of this homomorphism; i.e. when is p,(v) = v for all
2 € V7 The element s belongs to the kernel if sgn(s)se;s ! = ¢;, or

1

e sert = sgn(s)s

for all the elements of the orthonormal basis (e;). We can represent the el-
ement s as a linear combination
n

S = E E aii s ,-kei; eik

k=0 i1<..<i

of the elements of the Clifford algebra. Since the vector e; commutes with
itself and anticommutes with the other elements of the basis (e;), we have

~1 k—&
e ...ep et = (=1 ... e,

where ¢ = 1 or 0, depending on whether the index i is or is not contained
within the set of indices {i;, ..., i,}. The sign (—1)*~° does not depend on the
index i only if £ = 0 or k = n; therefore, the admissible form of the element s
is as follows:

s=a+be, ...e,, a,beR.

Then

e;se7t = g+ (—1)"be; ... e,.

If n is even then sgn(s) = 1, therefore b = 0. Because s must have a specified
parity, there are two possibilities when 7 is odd: s = a or s = be, ... ¢,. In
the latter case, however, sgn(s) = —1 % (~1)"~1. Thus, for any n, s must
be a number. There are only two numbers, +1 and —1, within Pin(V, g),
therefore, the kernel of the homomorphism s+ g, is {+1, —1}. The group
Pin(V, g) covers the orthogonal group twice.

The group Spin(¥, g) is defined as a subgroup of the group Pin(V, g) made
up of its even elements. The group Spin(¥, g) covers the subgroup SO(V, g)
of the group O(V, g) twice. If the signature of the metric tensor g is strictly
_ positive or strictly negative and if dim ¥ > 1, the group Spin(V, g) is connected.
_ For the metric tensor g with arbitrary signature, we shall define its subgroup
Spin, (¥, g) in the following way: Spin, (V,g) ={se Spin(V, g):ss" =1},
where for s = u ... u, we define s* = w ... u;. The group Spin_ (¥, g) covers
the connected component of unity of an orthogonal group (e.g.. the subgroup
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L! in the case of Minkowski space twice). If dimV = 1, or if we are dealing
with two-dimensional Minkowski space, this covering is trivial, i.e. Spin.(V, g)
decomposes into two connected components. In the opposite case, two per-
pendicular vector e; and e, exist in V, such that g(e, e;) = g(ez, €;)
= ¢e {+1, —1}. Then

o .o ) ' o Lo o« . o«
s{ot) = (acos T +sin e (cos 4 er—esin ez) = COS - +sin 5 e
is a continuous curve in Spin (¥, g), connecting + 1 = s(0) with —1 = s(27).
Therefore, Spin,(V, g) is a connected group covering twice the connected
component of unity of the orthogonal group. If the signature of the metric
tensor g is elliptic (and dim ¥ > 3) or strictly hyperbolic (and dim(V" > 4), the
group Spin, (V, g) is, moreover, simple connected.

The orthogonal transformation g, is the rotation by the angle a in the
plane spanned by the vectors ey, e,. Since gsamy = idy, we say that the vec-
tors “do not feel” the sign of s. The case is different with other objects—spi-
nors—on which the group Pin(V, g) acts faithfully, so that it is “only after
rotation by 4= that the spinor returns to the initial position, s(4w) = 1.

The space of real spinors Zg is a real vector space where a representation y
of the Clifford algebra CI(V, g) acts irreducibly. To be more specific, for each
se C(V, g), y(s) is a linear transformation of the space 2 such that

1. y(as+bt) = ay(s)+by (1),

2. y(st) = y(shy(),

3.If X’ is a subspace of Zg and y(s)&" < X’ for all se CI(V, g) then
2= Zgor2 = {0}.

The representation p of the algebra CI(V, g) induces the representation of
the group Pin(V, g) and its subgroups. Since non-null vectors generate both the
group Pin(V, g)| and the whole Clifford algebra, the induced representation
of the group Pin(¥V, g) is irreducible.

We can now write the “square root” of the Klein~Gordon equation. Let y
be a representation of the Clifford algebra C(V, g), where (¥, g) is the Min-
kowski vector space. Denoting y; = v(e;), we have

VivitVive = —28i.

Let » be a real spinor field, i.e. a mapping from the Minkowski space into
the space of real spinors Zgr. (In this case, this space is four-dimensional).
Hence, the sought equation has the form

.0 mec
(?”W“T)w =0

This equation has two essential defects. Firstly, if m # 0, there is no Lag-
rangian formulation of this equation which would be invariant with respect
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to the group Spin, (¥, g). Secondly, the interaction of each particle field with
the electromagnetic field is included in the equations of this field by replacing
8’% with the expression “H%f“ ~1i »ﬁ% Aj, where 4; is the four-potential of
the electromagnetic field. To do this, we require the complexification of the
Clifford algebra and the spinor space. The complexifield Clifford algebra is
equal to the Clifford algebra of the complexifield space V<, with the scalar
product g in V' determined according to the prescription in Chapter 7. Taking
pas a field with values in the space of complex spinors, we call the above
equation the Dirac equation. In the complex case, an invariant Lagrangian
exists.

If the dimension » of the space V is even, n = 2v, the algebra CI(V, g)¢
is isomorphic to the algebra C(2*) of all complex square matrices of degree 2%,
All the irreducible representations of this algebra are mutually equivalent,
while the dimension of the space of the representation (i.e. the space of complex
spinors) is 2’. Let (e;) be a basis in V'S, such that glei, e;) = &, and let

Ynr1 = p(er) ... y(e,).

Then y,,, has the following properties: 1. Va+1 anticommutes with each vector
Y@y Vur17@+y@yny = 0, 2. v2,, = 1. We shall define two subspaces
2, = {€X:y, 1 &= +&} of the space of spinors X, i.e. the spaces of left
and right half-spinors. We can represent each spinor as the sum

§ == §+ +§-— 3
where &, = _I.Ni:giﬂ & and, as we can easily check, &, € X, . For a non-null
VeCtor u, Yy = —p(Wyne1p(w)~*, and hence Trypiy = ~Try,,,, ie.

Tryny, = 0. (Similarly, we can demonstrate that for each orthogonal basis
(¢;) the trace of the linear transformations y(e;) and their products which are
not numbers is 0). Thus, the dimensions of the spaces 2, and X_ must be
equal to each other, dimX, = dimX_ = 2°~!, In the spaces of half-spinors X,
and 2_, the representation y induces irreducible and mutually nonequivalent
Iepresentations of the algebra CI*(V, g) and of the groups Spin(V, g) and
Spin. (¥, g).

; If the dimension # of the space V is odd, n = 2»+1, we can form two
_ irreducible representations of the algebra CI(V'C, g) in the following way.
Let (e;) be a certain orthonormal basis of the space VS, g(e;, ;) = ¢;;, and
_ let V" be a subspace of the space V© spanned by the vectors ey, ..., e,,. Let
_ Us construct the Clifford algebra of this subspace and the representation y
_ of this algebra in the spinor space X' ~ C?. In X, we define the two representa-
tions y, , y_ of the algebra CI(V€, g) by the formulae

y+(ei) = y(ei)a i== 1) cevy 2")3




'}’+(32v+1) = "y(e) ... V(ezv),

'y-—(ei) = y(ei)a l = 13 LEES) 2”’,

y-lezs) = —0y(er) ... y(ea,).
These representations are irreducible, unfaithful and mutually nonequivalent.
Each irreducible representation of the algebra CI(V'S, g) is equivalent to one

of the representations y, and y_. In the space 22 we can create a faithful
representation I” of the algebra CI(VS, g) in the block-diagonal form

I(s) = ((’)’*‘r(s) 2_ (S)), seCl(Ve, g).

In contrast to the even-dimensional case, all the irreducible representations

of the algebra CI(V, g) and of the groups Spin(V, g) and Spin.(V, g) are
equivalent. In particular, this is the case with the representations induced by

y,oand y_.
Let us now concentrate on the Minkowski space (¥, g). We shall give the
matrix representation of the Clifford algebra CI(V, g)€. Let

=( .

This matrix has the following properties: 1. for each matrix 4, A" s 4
=detd ¢, 2. ¢* = —1, 3. dete = 1. We define y: V€ — C€(4) by the following
formula

yu) = (_g(u) g(u)T)

We can easily check that y(#)? = deto(u) = g(u, u), as it should. In this way,
we have constructed the representation CI(VC, g) in &' = C*.
The element 5 of the group Spin(¥, g)

S = u1 I qu

has the representation

0= S)

U(s) = (—Dro(u) eo(uo)e ... 0(ua-1) eo(uzie,
V(s) = (= Dfo(u)eo(u)” ... o(tae-1)eo () e.

Since for real vectors o(#)* = o(u), we find that V(s) = U(s) and detU(s)
= s%s = + 1. The action of the group Spin(V, g) on the vectors is given by the
formula
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: . .
YWy = ('-getU- Uo(u) U"e §etU owd 8)

and thus

a(u) - detU- Us(u) U™.

If s € Spin, (V, g), this action is in agreement with that of the group SL(2, €)

discussed in Chapter 7.
To cover the group LI, the group y(Spin, (¥, g)) must contain all the

matrices
( )
0 U 5

such that det U = 1. We have thus shown that there is an isomorphism between
the groups Spin, (V, g) and SL(2, C).

The spinor space is the direct sum of the spaces X', and 2_. In the pre-
sent representation, we can regard the elements of 2, as spinors with the last
two components equal to 0, and the elements of X_ as spinors with the first
two components different from 0. Let us denote the components of the half-
spinor p € X, as yp* (where 4, B, ... = 1,2), and the components of the

half-spinor ¢ € 2 as qp’i(A', B,...=1,2). The group Spin, (V, g) acts in 2
in the following way:

yph s U B,

and in the space 2 _ in the following way: -

(p,& . (7; i;,

where fJ_};‘ = U{. Further on, we shall consider that complex conjugation
transfers from one space of half-spinors to the other and denotes y* = gy 4

=i (pA..
The matrices U = (U#) € S$L(2, C) have the following property:
UéeusUp = ecp,

where (e4p) = e It follows from this property that the bilinear form in the
space X,

€48 (pA'l/)B
is invariant with respect to the action of the group Spin, (V, g). Its complex
conjugate, which is a bilinear form in the space 2_,

exs 997,

is ‘also invariant. &35 is numerically equal to &4z, 4% and ¢*® also denote
_components of the matrix ¢.
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From the spaces 2, and 2 we can form their tensor products 2%, An

element of such a product has the form g4 Bi-Bi and the group
Spin, (¥, g) acts on it the following way:
wAi...Ak:‘}l...fi‘ > Ué: Ué‘: (”]gi [jg:wcl...ckﬁ,“p',

where this action commutes with the complex conjugation transferring Z%*
onto 2% If k = [, the complex conjugation leaves spinors in the same space
2%k 1f the element y € Z** does not change, we call it Hermitian.

An interesting part of the space 2% is the subspace S$*' composed of spi-
nors symmetric in both kinds of indices, i.c. its elements satisfy the equalities

y)Al...A,‘Bl.‘.B‘ - ,l/)(Al.‘.Ak)Bl...Bl — wAl‘..Ak(Bl...B,)'

In these spaces the group Spin. (¥, g) acts in an irreducible way, i.e. the spaces
S*! do not contain nontrivial subspaces which are invariant under the action
of this group. It turns out that each finite-dimensional, irreducible represen-
tation of this group is equivalent to one of these representations. If k+/ is
an even number, the representation does not distinguish the sign of the el-
ement s € Spin_ (V, g). It is then and only then that the elements of the space
S*! have tensor counterparts.

It follows from the form of y(u) that o(u)e is a linear operation from the
space of half-spinors X_ = X% = S0 into the space X, = X1°0 = §L.O
and, more over, this operation commutes with the action of the group
Spin, (V, g) in these spaces. If ¢ = (p*)e2_, then ‘

(c@ep)* = o(uyBsze p.
Therefore, the element
O‘(M)Ai; — o',;ﬁ‘u",
where (a{;‘i’) are Pauli matrices (k = 0, 1, 2, 3), belongs to the space 2! =
= §b1, Moreover, it is Hermitian if and only if the vector u is real. Below,

we continue to denote it as u4f = 0'(u)‘“5E and call it the spinor image of
the vector u. The inverse formula has the form

Ut = ofzut®,  where oky = g, cep508".

What does the spinor image of a null vector look like? In Chapter 7, we said
that deto(u) = O if and only if the matrix o(u) factorizes, i.e. u#® has the form
B = aAﬁB:

In the particular case where the vector u is real, to ensure that u? is Hermitian
the spinors 4 and «* must be proportional, 4 = ia*, and, moreover, 4

should be real. Rescaling the spinor o, we can thus always obtain the following
representation of the real null vector
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and, furthermore, we can find that the +sign corresponds to vectors directed
to the future, and the ~sign is for vectors directed to the past (assuming here
that the vector e, was directed to the future).

Just as the spinor image of a vector, we can create the spinor image of any
fensor. Let us consider, e.g., the spinor image of an antisymmetric tensor of
second order, F¥ = — FJ', It is given by the formula

F4BCD _ Al O.}SDFij_‘

The fact that FY is antisymmetric gives FABCD _ — FB4DC and. hence, the
following decomposition is valid

1 1

1 (FABED __ paBDCY . * (ABCD _ pBACD
5 (F F )+ 5 (F F ).

FABCD _

The first term of this decomposition is antisymmetric in the indices CD. Since
in a two-dimensional space each object which is antisymmetric in two indices

is proportional to ec"i, this means that

,% (FAB&I')MFABI.)(:') = FABLD

The spinor F4# defined by this equation is, as follows from the condition

FABCD . _ pBabC symmetric: F4®¥ = FP4  Similarly, we can write the second
term of the decomposition as

l (FABéI%__FBAél.)) — Gél.)gAB
2 2

where G is symmetric, Thus,
FABCD . pABCD | CD a8

Conversely, a certain antisymmetric complex tensor F*/ is connected with

each pair of symmetric spinors (F4%, GP). A special situation arises if the
tensor F* is real. Then, in order that F4#¢Y may be Hermitian, G4¥ = F4*

= FA% myst hold. Thus, the spinor image of an electromagnetic field tensor
is the symmetric spinor F4%. It is interesting to note the form of Maxwell’s
vacuum equations in this formalism:

g -~ F4€ = 0.

axAB
We may now reverse the questions which we have posed so far and ask if
we can give the vector, or tensor, image of a half-spinor. Since the group
Spin, (¥, g), acting on half-spinors, distinguishes the signs of the elements of
this group, and fails to do so on vectors and tensors, there is no mutually
unique tensor image of a spinor. An image exists however, in which the same
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tensor counterpart is attributed to the half-spinors o* and — «* (and only to
them). W can define

B o g4zB  FAB = yAyB
and then the pair (&, F'Y) defines the spinor a* to within the sign. The tensor F*J
is given by the formula
Fi = ¢%3085(64CoPad + ¥504aC).
Let us define the auxiliary half-spinor g* by the formula
OCA ﬁc__ ﬂA OCC.

It is determined to within a transformation B4 4+ Alo?. Substituting &4€
in the formula for F¥, we obtain, after simple transformations,

Fii = Kel—eiki,
where

e U'AB(ﬁAO‘B + ﬂB “)

is a real vector orthogonal to the vector &*. It is given to within a transformation

¢ > ¢ + (A+ Dk'. The tensor F*/ in the given form corresponds to the elec-
tromagnetic field of a plane wave; the null vector k' is proportional to the wave
four-vector of this wave. ‘

Let us now consider spinors of the S*° type. It turns out that the fields of
particles with 0 mass and the spin k#/2 are fields with values in these spaces.
The free equations of these fields equations (Pauli~Fierz) have the form

d
dxAsB
they are, therefore, certain generalizations of Maxwell’s equations.
Let us consider the function

F(zy) = FlaoHez, zy,

which is a homogeneous polynomial of the kth degree of the varables z; and z,.
It follows from the fundamental theorem of algebra that we can factorize this
function,

Fiv 4t = 0;

Fhivdiz, oz, = (ahzy) ... (%2 4),

which implies in turn that

Fhuode — g e,

This decomposition of the spinor F4:~4¢ is called canonical. The spinors
aA, ..., »4, which occur in the above formula are defined to within a coeffi-
cient, and only their directions are determined uniquely. Since a certain null
vector is connected with each half-spinor, the spinor F4:~ 4k determines k

null directions in Minkowski space, called its principal directions.
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The canonical decomposition of the spinor of electromagnetic field is re-
lated to the algebraic classification of this field; namely, we say that F¥ is of
the general type, if the principal directions of the spinor F4® are different,
ie.

FAB — qABB)  gA 4 44

and that it is of the null type (or the plane-wave type), if these directions co-
incide, i.e.

FAB = o445,

Of course, this classification is connected with a single point in spacetime and
can vary from point to point.




CHAPTER 10

Newtonian Theory of
Gravitation and the Principle
of Equivalence

We now pass on to a discussion of spacetime models which take into account
gravitational phenomena. Why is it that gravity plays so exceptional a role
as to be specially considered in developing a spacetime model, while the
electromagnetic or nuclear phenomena “superpose” themselves, as it were,
on that model? We have already tried to answer this question in Chapter 3.
Now we shall examine it in more detail. We will begin at the Newtonian level,
without reference to the results of special relativity.

It is known that the mass of a body appears in at least three different roles,
namely as '

(1) inertial mass, my,

(2) active gravitational mass, Mg,

(3) passive gravitational mass, Mpg.

The inertial mass occurs in Newton’s equation m; T = F.

The active gravitational mass is the source of a gravitational field and
appears in Poisson’s equation for the gravitational potential ¢,

A = drkm 46 0(r—1,(2)),

where the function r;(¢) describes the motion of the body, and k is the gravita-
tional constant. This equation has a solution

km
g = -2,
where r = |r—r].
The passive gravitational mass occurs in the expression for the force
F = —mpggrade.
The third law of dynamics ensures the equality of the two gravitational
masses. Indeed, it implies that

12 12
My eMpe = MpgM 46,
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which can be written

1 2;
28 = 549 = ] = const.
Mpg Mpg

Negation of the above assertion would lead to the conclusion that the total
momentum of the system consisting of bodies 1 and 2 is not conserved. That
the constant 4 may be different from 1 is unessential since it can be absorbed
into the gravitational constant. Thus, we have

Mpg = Mpg = Mg.

The gravitational mass mg plays a similar role to that of an electric charge
in electrodynamics, and is often spoken of as gravitational charge. An essen-
tial difference between gravitation and electrodynamics lies in the equality
my = mg. This equality is an experimental fact, which has been verified to
a very high degree of accuracy. In 1894 E6tvos achieved an accuracy of the
order of 10~® (although it is now believed that his measurements were in
fact somewhat less accurate). In 1964 Dicke and his collaborators reached the
accuracy of 10~*1, which was improved to 10~!2 by Braginski in 1971.

Accepting the equality m; = mg as exact leads to the declaration that the
equation of motion of a body in a gravitational field is universal. This means
that all bodies in that field satisfy the relationship

f+gradg = 0.

It follows that all bodies starting with the same initial conditions move in the
gravitational field in the same way. The formulation of the first law of dynamics
must be changed if we want to take gravity into account. We will now say that
there exists a class of preferred motions, called free falls, a reference frame,
and a function @, such that the equation of free falls has the form wntten
above.

What was underlying the affine structure of gravity-free spacetime? Of

course it was the fact that the equation of motion of free particles was of the
form

F=0,

which is equivalent to the equation of a straight line

r = ro+Vr.

The affine structure of spacetime ties in closely with the geometric repres--
entation of free motions. Now, with the changed equation of free particle
motion, it may be doubted whether spacetime can be realized as an affine
space. For instance, we can no longer assume that free falls correspond to
straight lines in £, because examples can readily be given of falls whose world-




Fig. 10.1

lines intersect at more than one point (Fig. 10.1). (Here the possibility of
identifying the world-lines of free falls with the extremal lines of the corre-
sponding curved geometry suggests itself). It may appear that a way to save
the affine structure is to accept that free falls are represented by curves, while
straight lines correspond to some other, fictitious motions:

¥+ grade = 0 < certain curves in E,
= ro,+Vi <> straight lines in E.

It is easy to see, however, that the form of the equation of free falls remains
unchanged after transformation

Y1 +a(f)
Qg p—8a-T,

where a(¢) is an arbitrary vector function of time. Under this transformation,
owing to the arbitrariness of a(¢), the linear relations in the equation of a
straight line will become nonlinear. The affine structure defined above would
not be independent of the choice of reference system.

The formulae for the transformation of position and potential reflect our
inability to distinguish between gravitational and inertial forces by means of
local experiments. This is illustrated by “Einstein’s elevator” (Fig. 10.2).

An observer in an elevator which is at rest (in the Earth’s gravitational
field) and an observer in a rocket that moves with a uniform acceleration are
in similar situations. The enclosed observer cannot tell in which of these situ-
ations he actually is. The equivalence of gravitational and inertial forces
becomes even more apparent when we consider an elevator (or rocket) accel-
erating in the gravitation field of the Earth. An observer conducting local
experiments is not able to separate gravitation from inertia.

The requirement of localization is essential. To reject it, one could demand
that the potential ¢ vanish far away from the source of the gravitational field,
ie. @ =0 asr— 0. Of course this cannot be done ina closed elevator,
because it would require the introduction of a global reference frame and the
observation of events at large distances from the bodies creating the field.

Neither can the condition of the vanishing of ¢ at infinity be satisfied in
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cosmology, where one has to allow for the approximately homogeneous
distribution of matter in the Universe.

Assuming that the mass density is constant throughout the Universe, we
obtain for the mean gravitational potential the equation

Agp = const,

whose solution is ¢ ~ r%. Thus no preferred inertial system can jbe distin-
guished in this case either. In Newtonian cosmology one should accept the
complete equivalence of all frames in which the equation of free falls holds,
¥+gradep = 0.

The final conclusion from these considerations is that when gravity is taken
into account, it is impossible to introduce—by invoking the laws of mechanics—
an affine structure into spacetime. In other words, one cannot introduce
_ inertial systems. As in the case of the principle of relativity, we shall postulate
after Einstein that this cannot be done by any experiments, not only mechanical
_ones, This generalization is not trivial, considering the absence of relevant
_ experimental data.




104

The situation can be summarized in a table:

Newton’s physics Einstein’s physics

Without No preferred inertial frames can | No preferred inertial frames can
gravity be distinguished by mechanical | be distinguished by any experi-
experiments ment

With Inertial frames cannot be intro- | Inertial frames cannot be intro-
gravity duced by local mechanical ex- | duced by any local experiment
periments

We recall the importance of the word “local” here; with it, the theory of
relativity does not satisfy Mach’s principle, which asserts, in essence, that
there exists a close relationship between local laws and phenomena and the
motion and distribution of matter in the Universe as a whole.

How can this negative postulate be used as a basis for constructing a theory
of gravity? Let us think of the way from Galilean theory to special relativity,
which was also based on negative assertion. In Galilean spacetime (or Max-
well-Lorentz’s) we had at our disposal the absolute time form 7, the scalar
product 4 and the ether e (or the ether e and the scalar product g). The step

to special relativity consisted in giving up the ether. Schematically this step
may be represented as

(h,7,e) (e, 8) > 8.

Now we shall analyse a different aspect of spacetime’s structure. We shall
see that every affine space admits an object I” called the affine connection,
and that certain restrictions on this connection (flatness) imply the local affinity
of spacetime. Since, as we have already seen, spacetime cannot be affine if
gravity is allowed, it will be appropriate not to assume the flatness of the
affine connection. This situation can be described by a diagram analogous to
the previous one:

(E. V) (E,flat IY— (E, ).

Let us note, in passing, that the assertion of local indistinguishability of the

\ -/

7/

| - |
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forces of inertia from the forces of gravity has limited application. The paths
of two particles falling in an elevator cabin (Fig. 10.3) will approach each
other because the particles move towards the centre of the Earth; this effect
will not be observed in the case of particles in an accelerating rocket. Under

the transformation

prop—d-T

we have

gradg > gradp-—a,

but the second derivatives of the potential remain unchanged:

‘“‘ %@ %
oo T aren

Tt is the second derivatives that reflect the particles’ drawing closer, and it is

known that the second derivatives of the potential are different from zero only

in real gravitational fields.

For let us consider a certain free fall x*(¢) and the family of the adjacent
free falls x™(¢, ), such that x*(¢, # = 0) = x*(¢t). We call the vector n*
& o ox® !
- M Jy=o

first-order terms in %, the vector ya*(¢) connects the points of adjacent falls at
a time ¢: the standard fall x*(¢) and the fall x*(z, ).
To find an equation which satisfies the separation vector, we differentiate
with respect to # at # = 0 the equation of free falls for the whole family:

.

the separation vector of this family. With accuracy up to the

P
‘ Jt? ax*
Substituting the partial derivatives and observing that
0 d

ke d

Ju—— = e
0N |y=0 ox*
we obtain the formula

d*n* g

b et 0P = 0.

drr oo "

Thus the second derivatives of the potential determine the relative acceler-
ation of free falling particles. In apparent gravitational fields, the second de-
rivatives of the potential vanish, causing the fact that the relative velocity of
adjacent particles remains the same. In the next chapter we shall consider the

counterpart of this equation in the general relativity theory.




CHAPTER 11

Geometric Foundations of the
General Theory of Relativity

Recall that the equality of gravitational and inertial masses, mg; = my,
implies the impossibility of defining inertial reference systems by means of
mechanical experiments and, according to Finstein; this impossibility holds
even if non-mechanical experiments are aliowed. On the other hand, we know
that the fundamental laws of physics can be expressed in terms of differential
equations; this property is referred to as the “infinitesimal locality” of the
physical laws. This implies, in turn, that spacetime should be “infinitesimally
affine”. In other words, the new model of spacetime should preserve of the
structure of an affine space those elements that allow us to evaluate deriva-
tives of geometric objects used to describe physical quantities.

We shall now sketch the concept of an affine connection in an n-dimensional
affine space (F, V).

A frame (o, e;) defines rectilinear coordinates &: £ — R" by means of the
equation

p = &(ple,+0.
They are called rectilinear coordinates, since fixing (n—1) from among them
determines a straight line in .
For the curve ¢: R — R we can write

g(d) = ¢'(De;+o.
The vector tangent to the curve g is given by

T g(A+AD)—q(2) _ dqi
(@ = lim S = e

For an affinely parametrized straight line, the tangent vector u(1) is constant.

Let us now introduce curvilinear coordinates in E. Let the mapping
f:R* —» R" be a diffeomorphism, i.e. a bijection such that f and f~! are con-
tinuously differentiable (any number of times). Let us determine the mapping
& = fo&: E— R". We can see that the pair (E, &) is a chart in E; & is called
the curvilinear coordinate system in E. Let us consider i-th line of the coordinate
system &, i.c., the curve g; the image of which in R" is
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— & = const  for j # i,
§(guA) = {ZO for j =i,

At this point, we must make a remark concerning the notation used in
physics. The mapping
f:R*» R”
is usually written as
x=flx) or X=Xx),
while the inverse mapping /1 is
x=f"1x or x=x(x.
We have
7(D) = &(q:(D)e;+0,

a0 = x7o £(q.(D)e;+o
= xI(E, .., Bt A, BB, L Ee 40,

E

qu-—-———*E

Fig. 11.1

therefore, the tangent vector to the line ¢, (Fig. 11.1) is equal to

where €, is a vector field defined on E. Since fis by asSumption a diffeomorphism
det(dx//dx") # 0, and, therefore (e;(p)) is a basis in ¥ determined by the
chart (E, &) (for any point p € E).
We can decompose any vector v € ¥ with respect to this basis:
v = v'e,
(where, if v is the vector field v: E — V, it is reasonable to decompose the vector

v(p) with respect to a basis at point p € E). From the fact v = v'e; and from the
relation between €; and ¢;, the following equation follows:

axt

i 7
v axjf).
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We can see that a transition from one chart to another (not necessarily from
a rectilinear chart to a curvilinear one) corresponds to a change in the basis
at all points of the manifold E. This change in turn leads to a transformation
of the vector components in agreement with the formula given above. It turns
out that the components of other geometric objects are transformed in a simi-
lar way.

Let (e') be a basis dual to the basis (e;), i.e. a basis in the space of linear
forms (covectors) V*, the action of which on the elements of the basis (e;)
may be expressed by the formula

<ei 3 ej> = 6J .
"The basis (¢*) dual to the transformed basis (€;) is related, as we can readﬂy find
out, to the basis (¢°) by the formula

oxt

s x
ax!

Hence, in a similar way as that used for vectors, we obtain the transformation

law for covectors:

fo
W; =

3x'

The transformation law of geometric objects is quite frequently taken as their
definition. We can define a tensor of type (p, g) as an object such that to each
chart a system of numbers T: - ’P is assigned, an under a change of the chart
the system transforms in the followmg way:

= JOxts dx'r Jxh ox'e

Bgdp Ky Kp
Titis = i oy g e Thle

For example, the transformation law for the metric tensor has the form

ox* oxt
8ij = Frir 8ki-

The Levi-Civita pseudotensor, the form of which—in inertial systems—we
defined in Chapter 8, does not transform in the same way as tensors. Let us
require that in any coordinate system & the Levi-Civita pseudotensor ;i
be compietely antisymmetric (i.e. antisymmetic in any pair of indices) and that

€0123 = I/:m;) Since

k

det(g;,) = [det(g ,)] det(g:,),

using the combinational definition of the determinant, we obtain that

det(dx*/dx') 9x™ 9x" OxP x4

Puk = |det(dx*/oxY)| ox' Ox/ Ox* Ox' Emnpa-
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The determinant det(g;;) is an example of a scalar density with weight —2,
while ¢;;, is an example of a pseudotensor of type (0, 4). The transformation
law for a pseudotensor differs from that for a tensor only in sign when bases
are interchanged with a change in orientation. Raising the indices in ¢, jx by
means of a metric tensor, we obtain the pseudotensor e, of type (4, 0) called
the Levi-Civitd contravariant pseudotensor. Let us note that 0123 — _
~ (det(g,) 2.

Obviously, the transformation laws for tensors, tensor densities and pseudo-
tensors are valid for any differential manifold and not only in an affine space.

We will continue to analyse the structure of the affine space (E, V), attempt-
ing to distinguish its “infinitesimal part”. We introduce the notion of absolute
differentiation in E. Let ¢: R — E be a curve in E, and let the vector field
u:R — ¥V (determined only on this curve) be a field tangent to it (Fig. 11.2).

Fig. 11.2

For the vector field v: R — ¥, determined on this curve, we can introduce the
notion of the absolute derivative along g

do . v(A+AD)—-o(D)
=1 . L
di Af}o A
This definition is correct, since both vectors ©(1+A2) and 2(1) belong to
the vector space ¥ (this differentiation would not be possible for manifolds
without affine space structure). Decomposing the vector v successively with
respect to the bases (¢;) and (e;), and then differentiating, we obtain

do  dof dot _ , dé’

AT AT et
In the above formula we took into account the fact that the vector fields

4+ e; were constant and the fields A — €, were variable. Considering the rela-
tions between the vectors of the bases,
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we obtain that
de; 0%x! di"e _ ?xi 9%t 7
di~ oxFext da 7 oxkoxt ox
Let us introduce the notation

- o2x) Ix

= e o

.

We can readily find out that the numbers I'";, are determined by the coordinate
system &, but they do not depend on the choice of the rectilinear coordinate
system & We interpret f’jk as the /th component (with respect to the basis (€;))
of the derivative of the vector €; in the direction of the kth line of the coordinate
gystem £. We can now represent the components of the absolute derivative
of the vector field v with respect to the basis (€;), defined by the equation

do D7

éi;

di d

o

by means of I":

DT 0w
'a‘z“ == F}T%—F,,‘@ u.

Since the second derivatives of the coordinates x/ over X' appear in the

definition of I', we can conclude that I, = 0 if and only if the coordinate

system & is rectilinear. This property of the symbols " leads to the statement
that they are not tensors since if the coordinates of a tensor are equal to zero ina
certain coordinate system, they are equal to zero in any coordinate system.
The symbols fi,k form a geometric object, called an affine connection, or an
object of parallel transport. The latter name comes from the fact that in the
language of absolute derivatives the vector v is parallelly transported along
the curve g, if

do
=
or, in other words,
Do
da 0.

We have therefore distinguished in the affine space (£, V) an object of affine
connection I', which determines absolute differentiation. The affine space is
a special case of a space endowed with affine connection, or, more briefly,
a space with connection

(E, V)~ (E,T).
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The connection I is a geometric object which, after a transition from the
coordinate system &—which is no longer a rectilinear system, since this notion

is not well defined in (&, I")—to the system &, transforms in the following way:

2w m n 240 By
Py, O o o o
x! ox’ Ox IXIox* dx
We obtain this transformation law in an affine space, and then generalize it
to any space with connection.

Our previous considerations suggest that we should take the four-dimension-
al differential manifold E with the affine connection I” as a spacetime model
which takes into account gravitational phenomena.

In a space with an affine connection, we can, from the equation

Do! dot . .
= e

determine the absolute derivative of the vector v along the curve g, and, sub-
sequently, introduce the notion of the parallel transport of vectors.

In a simple and natural way, we can generalize the notion of the absolute
derivative (and that of parallel transport) to any tensor fields, making use of
the requirements of linearity of this derivative and the demand that it should
satisfy the Leibniz formula; for scalar fields, the absolute derivative should be
equal to the ordinary derivative.

We then introduce the notion of a covariant derivative. This is a tensor
which is obtained by taking absolute derivatives in the directions of coordinate
lines. For the Ith line, ¥* = &% and, therefore, the tensor of the covariant
derivative of the vector field ' has the form

i
Vo' = %‘*‘Fijl?)j.
In order to give the formula for the covariant derivative of any tensor field,
let us first consider the covector field w;. From the Leibniz formula, we have

V(w9 = w;V,0' +2'V,w,.
Since the covariant derivative of a scalar field is equal to an ordinary derivative

i

. a . v . . . oW
i _ i i ¥ R 1 i
V'V, w; = Tk (w0 )—wimax, —I'ywv! = v

ox*!
and because this formula is valid for any field 2%, we have

awi
Ix!

For a simple tensor v'w,, from the above formulae, using the Leibniz
formula, we have

--FJﬂWj‘UL,

Vlwi = -'Fj,-le.




. J . .
Vi@'w) = 5 @w) + Lo w, =T w,.

Then, since each tensor is the sum of simple tensors, we have for any tensor
of type (1, 1)

V,T}= T;+Fllef'“FleT;:

oxt
Hence, it is not difficult to guess—and, if there is paper and ink enough, to
derive—a formula for the covariant derivative of any tensor field:

T
v, T,f,g

Sigmik
‘jq

= o TP+ T T le L 4+ T T

L A T % iy
F.IllTka.,.jq quszf.“,f’,_lk-

The covariant derivative of a tensor (pseudotensor) field of type (p, q)

is a tensor (pseudotensor) field of type (p, g+1). (The same formula gives
the covariant derivative of a pseudotensor field).

Geodesics are generalizations of the straight lines of affine geometry. Let
us bear in mind that « straight line was defined by the equation

q(}) = a(Hw+o,
where we V, o € E, while a was a diffeomorphism a:R — R (it is enough
to require that ' > 0). The tangent vector to this straight line is
u(A) = a'(AHyw;
and the derivative of the tangent vector with respect to the parameter 1 is
proportional to itself:

du
dA
or in other words,

Let us note, moreover, that the coefficient b is equal to zero if and only if
a(4) = wA+v; we say then that A is an affine parameter.

Geodesics in a space with affine connection are curves satisfying the equa-
tion

Dd  dut ., . )
T an + I it = by,
As we can see, these lines play the same part in spaces with affine connection

as straight lines in affine spaces. As in the case when b = 0, we say that the
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parameter A is affine. We can easily demonstrate that such a parameter always
exists, and that if 1 is an affine parameter, then only 44+ v is also such a par-
ameter.
In the Newtonian theory of gravitation, the equation of motion for a material
point has the form
2
drz
We can write this equation in another form:
du

i
T + 1Mt = 0,

where u is a tangent vector to the world-line of the material point, (uf)
= (9,, vy, v,, 1), while of the affine connection coefficients, only the coefficients
T4 = 0p/dx* are different from zero for « = 1, 2, 3. We can thus see that
the world-lines of material points in the Newtonin theory are geodesics within
a certain geometry, and the absolute time ¢ is an affine parameter. The insep
arability of the forces of gravitation and inertia is now expressed by the non-
tensor character of the coefficients I™j; in a non-inertial system we have

+gradg = 0.

I''jouu* ~ grad ¢ + Coriolis force + centrifugal force + ...
b @

In the geometric approach to the problem of motion in a gravitational field,
the question of equality between the gravitational and inertial masses vanishes.
Quite simply, in the geodesic equation, there is no room for considering these
masses separately.

When is the space with an affine connection, (¥,1") an affine space? As
we have already mentioned, this occurs if there exists a coordinate system
such that I = 0. It follows immediately from the above that the quantity,

Qijk = Fikj'“rijka
which from the transformation law for the coefficients 1™ is a tensor, must
vanish:
We call the tensor Q the torsion tensor.
The sufficient condition for the space (E,I") to be locally affine is the
integrability of the equation
axt L ot
oxioxs — T oxt’
which results from the transformation law for the affine connection coefficietns,
if we put I = 0. If the torsion vanishes, the integrability of this equation
is ensured by the equality

Rijkl =0,

A RS R e e
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o an
in any coordinate system. The quantity R’ is a tensor called the curvature
tensor. If we add to these two conditions, 1.e. the vanishing of the torsion and
curvature temsors, a condition stating that whole E is the domain of the
chart where the coefficients I™ 1 vanish, and moreover that R* is the image of
this chart, then (E, I') will be an affine space.

Calculating the commutator of the covariant derivatives of the vector field,
we obtain the formula

(Vi VJ - Vjvi)‘l)k == Rk[ij‘vl - Qlijvl‘l)k,
called the Ricci identity. It follows from this formula that in fact R¥,;; is a tensor.

The curvature and torsion tensors are antisymmetric in the last pairs of indi-
ces

Ry = Ay Iy =1 1™

Rijkl = Rijkl: Qijk = “Qikj
and they satisfy the differential identities, called the Bianchi identities:

ViQhay+0'miQ ™y = Rty
(where the square brackets mean that we should antisymmetrize all the indices
in them), and

Vie Ry jiimy + R ju e Qtm = 0.
(The vertical dashes signify that the index j between them is exempt from
antisymmetrization),
Adapting spacetime so that it takes into account the gravitational interac-

tions, we must give up at least the condition that the curvature vanishes. Be-

cause we cannot detect torsion by simple mechanical experiments (nor, as it
appears, by electromagnetic ones), we usually assume that

Qijk = 0

In the affine spaces of the Galileo theory and the special theory of relativ-
ity, we had such metric elements as n, v and g, which were tensors in ¥, i.e.
constant in E, and therefore satisfied the equations

Vh=0, V=0, Vg=0.

In a model of the general theory of relativity, it is thus natural to retain the
condition of the vanishing of the covariant derivative of the metric tensor.

The triple (E, I, g). where g is a tensor field on E of type (0, 2), satisfying
the conditions:

Qijk =0, Vgu=0,




115

is called the Riemannian geometry. Our considerations lead to the suggestion
that this geometry is the most appropriate model of spacetime in the relativ-
istic theory of gravitation. It turns out that the conditions given above lead
to the conclusion, that the affine connection coefficients I}, , which, in this case,
we call Christoffel symbols and denote by { }k }, are equal to

{jik} = % g’ ( 91, | %8 9gjn )

oxk ' oxi Ox!

Y el A

In the Riemannian geometry, the connection is determined by the metric,

’ we can therefore say that we have the pair (E, g), which we call the Rieman-
nian geometry.

It follows from the condition Vg = O that the length s, defined by the for-

mula

ds? = g;;dxdx/,
is an affine parameter along the geodesics. Moreover, it turns out that the
geodesic equation is equivalent to the variational pinciple

8{ds = o.

Thus, we can see that the geodesics satisfy the necessary condition for the
extremal value of the length.

In the Riemannian geometry, we call the curvature tensor a Riemann tensor.
The fact that this tensor vanishes over a certain region is equivalent to the
possibility of introducing a coordinate system in a neighbourhood of each
point of this region such that the coefficients of the metric tensor are constant.
The Riemannian spaces, where the Riemann tensor vanished, are called flat.
Compared with any curvature tensor, the Riemann tensor has much richer
symmetry properties. Let us enumerate them:

.Rijkz = "Rijlka

Rl[jkl] = 0’
- Rijkl = ikl
Rijkl = Rklij-

The first of these properties is valid for any curvature tensor. The second is
a resylt of the assumption that torsion vanishes. The third results from the .
assumption that the covariant derivative of the meftric tensor disappears. Fi-
nally, the last property results from both conditions imposed on the connection.
In an n-dimensional space, a tensor with the symmetries given above has

w

s

n? . . . . .
Tz—(n2—~1) independent components. In the four-dimensional case, this

number is 20.
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Let us consider which quantity describes the strength of the gravitational
field at a given point of spacetime. Although in some region the metric tensor g;;
describes fully the gravitational field, an appropriate choice of the coordinate
system can bring it at a given point to the standard form from the special theory
of relativity. Although the affine connection coefficients give an expression
for the gravitational force, they are glued together with the inertial forces,
Moreover, at a given point, through an appropriate choice of the system, we
can reduce them to zero. The coordinate systems for which at a given point
the first derivatives of the metric tensor (and, as a consequence, the connection
coefficients) vanish and the metric tensor itself takes the form of the Minkowski
matrix, are called local inertial coordinate systems. They are locally the best
approximations of the inertial coordinate systems of the special relativity
theory. In these systems, the physical laws determined by the special relativity
theory are valid locally.

It is only the Riemann tensor containing the second derivatives of the
components of the metric tensor that we can regard as the strength of the
gravitational field. In contrast to electromagnetism, this strength is not related
to a force, so it does not provide information about the motion of a single
particle. It contains, on the other hand, information about the motions of
adjacent particles. For if we consider a family of the world-lines of particles,
namely the geodesics x'(s, %) in the neighbourhood of the standard geodesic

i

dx

7] N 0’
the simple calculations involving the use of the Ricci identity give, the so-called
geodesic deviation equation

x'(s) = x'(s, n = 0) and determine the separation four-vector n' =

2
T n' = R uutn',
Therefore, measuring the relative acceleration of adjacent test particles in the
gravitational field, we can, in principle, determine the curvature tensor.
Taking the trace from the Riemann tensor, we obtain the Ricci tensor

— PRk
Rij = R ikjs

which is symmetric, R;; = R;;. Taking the trace once again, we obtain the
Ricci curvature scalar ‘

R = Rijgij.

In two-dimensional space the Riemann tensor is expressed by the curvature
scalar. In three-dimensional space, in turn, the Riemann tensor is expressed
by the Ricci tensor. In space with dimensions # > 3, the number of the inde-
pendent components of the Riemann tensor exceeds that of the independent
components of the Ricci tensor, and, accordingly, the Ricci tensor does not
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contain all information about the Riemann tensor. We can then introduce
the Weyl tensor C'jy; describing this information in the Riemann tensor that
is not contained in the Ricci tensor. It is defined by the following formula:
Cly = R+ %2“ 5§£R{]]“ mz”(;:"ﬁ éka{] R.

This tensor has all these properties of symmetry that the Riemann tensor has,
and, moreover, it is tracefree in any pair of indices. In four-dimensional space,
the number of independent components is 10. In a tensor space with the symme-
tries of the Weyl tensor, the orthogonal group acts in an irreducible way, and,
therefore, this tensor cannot be further decomposed.

We call the operations

gy~ &y = €8u

where U is an arbitrary function, conformal transformations of the metric
tensor. For these transformations, the Weyl tensor does not change, C"jy= C'jy.
Therefore, quite frequently, it is also called the conformal curvature tensor.
In particular, this tensor vanishes if and only if the metric is conformally flat,
i.e. if it is locally proportional to the flat space metric.

In a three-dimensional space the Weyl tensor vanishes identically. This
does not mean, however, that any three-dimensional space is conformally flat.
The condition for conformal flatness is here the equation

1
V[iR};]“’ZV[iRa’;] = 0.

A two-dimensional space is, on the other hand, always conformally flat.




CHAPTER 12

Einstein Equations

We now limit our considerations to a four-dimensional Riemannian space
(£, T, g). Just as in the special theory of relativity, we assume that the metric
tensor g has the signature (+, —, —, —).

Let us now give a scheme which shows the relations between the theories
of spacetime discussed here.

Galileo theory

E T h
Q=0,R=0,Vh=0,
V=20

Newton theory
E, F s I’l, T E’ I » &

Q=0,Vh=0,Vr =0 g0=0Vg=10

TrR ~ g+ Ap = 4rke Gravitational field equations?

free falls <> geodesics free falls «» timelike geodesics

light rays «» null geodesics ideal clocks
measure §

In this scheme, SRT and GRT denote the special and general relativity
theories, respectively. Tr R is the Ricci tensor.

We should note here that Einstein did not build the theory of gravitation
on the Newtonian level, but set out from the special theory of relativity. Per-
haps, if Einstein had preceded the construction of the general theory of rela-
tivity by a geometrization of the Newtonian theory, he would have reached his
goal earlier than he did. If we neglect the problem of the form of gravitational
field equations, the formulation of the GRT given above is contained in a paper
which Einstein wrote in 1913 together with the mathematician M. Grossmann
[12]. The field equations on the other hand have a long and complicated history.

How should we write the gravitational field equations? So far, we know only
that in the nonrelativistic limit these equations should turn into the equations
of the Newtonian theory of gravitation. In this theory, on the right-hand side
of the equation we have the mass density. What can we expect on the right-
hand side of the GRT equations?

Relativistically, mass corresponds to energy, and the mass density to energy
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density, which, in turn, is proportional to Ty,—a component of the energy
momentum tensor. Hence the idea of considering the energy-momentum ten-
sor T;; as the source of the gravitational field. Since the coefficients of affine
connection, which are linear combinations of the derivatives of a metric tensor,
were in the Newtonian theory proportional to the first derivatives of the po-
tential @, we can suppose that we should regard g;; as gravitational potentials.
The natural generalization of the Laplacian occurring in the Newtonian
theory of gravitation is of course the d’Alembertian, and the left side of the
gravitational field equations should therefore contain [g;;. Moreover, we
should add a term accounting for the energy and momentum of the gravita-
tional field itself to the energy-momentum density tensor; by analogy with
electrodynamics, this term should be a quadratic function of the derivatives
of the metric tensor. Finally, we can symbolically represent the gravitational
field equations proposed by Einstein in 1913 and 1914 [12, 13] as

Ogi; = #Ti;+(9g/0x)3;.
Because of the occurrence of first derivatives (and also the d’Alembertian),
these equations are not tensorial; in fact, it turns out that we cannot construct
any tensor from the first derivatives of the metric tensor. This means that these
equations are satisfied only in certain coordinate systems. At first, on the
grounds of causality, Einstein rejected the tensor form of the equations, which
_ we can write symbolically as

tensor(g;;) = »T};.

Since these equations are tensorial, any transformation of coordinates trans-
forms the solutions of these equations into some other solutions.

Let us now suppose that we have Cauchy data, given on the hypersurface
x% = 0. Since the gravitational field equations are hyperbolic, the initial data
should determine such quantities as the density of matter or the (Ricci) cur-
vature scalar at future-oriented points. Let, e.g. the point (0, 0, 0, 0) lie on the
same world-line of matter as point (1, 0, 0, 0). Let us now perform a transform-
ation of the coordinates which is reduced to an identity in the neighbour-
 hood of the surface x° = 0. In this way, we obtain a different solution of the
same field equations, but now the point (1, 0, 0, 0), which still lies on the same
_ world-line as point (0, 0, 0, 0), is in another place (Fig. 12.1), while, e.g. the

(1,0,0,0) (.,0,00)

00 . _ | Cauchy data
0,000)
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density of matter in the previous point will in general be different. Thus, on
the basis of tensor equations, we cannot predict what the density of matter will
be, say in an hour. “Obviously”, this disqualifies [13] these equations.

The above train of thought is not valid in view of the fact that the coordice-
nates themselves are not physically meaningful, but that only a point in space-
time is. After any transformation of the coordinates, the value of the energy
density and the curvature scalar does not change; while the fact that the same
point now has different coordinates in a new system should not really surprise
anyone. Einstein used this mistaken argumentation until 1915 when he re-
cognized that, on the contrary, the field equation should have a generally
invariant, i.e. tensor, character {14, 16]. Assuming this point of view, we come
to the conclusion that singled-out systems of reference do not exist, and that
the group of automorphisms of GRT is the group of all transformations of
coordinates.

In 1915 Einstein proposed [14] the gravitational equations

Ry = «Ty;.
Because of the generalized law of conservation of the energy-momentum
V; T = 0, this equation imposes an additional differential condition on the
Ricci tensor and causes the overdeterminacy of the system of gravitational
" field equations. For this reason, in late 1915 [15], Einstein replaced it with the
equation

Gi; = »Ty;
where G;; = R;;—}g;; R is called the Einstein tensor. The equation V; T = 0
is now simply a conclusion from the so-called contracted Bianchi identity

V;GY = 0.
This situation resembles that in electrodynamics. Here, from the Maxwell
equations
. ir
VP = =T
after taking into account the identity
V.V,Fi =0,
resulting from the antisymmetry of the tensor of the electromagnetic field F'/,
we obtain the equation of continuity of the current density vector
V.j* =0,
i.e. the law of conservation of charge.

As all fundamental physical equations the equations G;; = »T; result from
a certain variational principle. In this case, it has the form

1
55(3-5;11)@“0,
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where dw is the density four-form and £ is an invariant Lagrangian of matter.
We carry out the variation with respect to g;;.

We still have to determine the value of the coefficient ». To find it, we shall
consider a weak gravitational field with corresponding small curvatures, and
we shall deal with not very fast motions, that is, v/c < 1. Then, in the equation
of geodesics

d2x
ds?

;. dx/ dx*
Tl ds ds =0.

we can make a number of approximations, First, we put

ds >~ cds,

5]
ds =\ )
Then, neglecting the first-order terms in /¢, we have
codxd dxF 1 [, 38 0 goo )
i T T o~ i —_ ij Jjo Y 500
T ds ds 7 oo £ (2 ox°  ox7 |’

Since the motions are slow, the ratio of the time derivatives to the spatial de-
rivatives is of the order of v/c < 1, and, taking into account the weakness of
the gravitational field

hence, it follows that

gi; = %;+small corrections,
we have no difficulty in obtaining that

i N_l_ 9800
I 00 = ) "“axi s

and, thus, the spatial components of the equation of geodesics take the approxi-
mate form

d2x* , 1 dgoo
ar +c 3 o =0 fora=1,2,3.

By comparison with the classical Newtonian equation

we obtain the approximate result

2¢

8oo = 1+"g§“-

In the case of perfect dust

T = oc*u;u;,
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the Einstein equation

gives

By comparison with the classic Poisson’s equation

Agp = 4zko

we finally obtain
»x = 8nk/c*.

S

RS
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CHAPTER 13

Some Aspects of the General
Relativity Theory

The general relativity theory formulated in the previous chapter does not
single out any reference systems. The equations of this theory have a tensorial
form. If we have the solution of these equations in a certain coordinate system
and if we then transform it into another system, the transformed solution
satisfies the initial equation expressed in the new coordinate system. The above
property of the general relativity theory is often called the principle of general
covariance. We can formulate it otherwise in the following way: the group of
symmetries of the general relativity theory is the full group of diffeomorphisms
of spacetime.

What do we call the group of symmetries of a physical theory? In every theory,
we can distinguish absolute and dynamical elements. The latter serve to describe
the history of a physical system and, in contrast to the former, change in the
course of motion. The group of automorphisms of the absolute elements of
a physical theory is called the group of symmetries of this theory. In a few
examples we shall show how the dividing line between absolute and dynamical
elements runs, and what groups of symmetries look like.

The first example is Newtonian mechanics where we have the following
elements:

(E,V,h, v; coordinates of particles, densities, pressures, ...),

absolute dynamical

The Galilean group is here the group of automorphisms of the absolute el-
ements.

Another, more particular problem is the classical one-body problem. Apart _
from the absolute elements given above, two other such elements are involved
here, namely the system in which the body is at rest (the ether of this body e)
and the force with which the body acts on another one. The force is character-
ized by a potential, e.g. by the gravitational potential ¥ = o/r:

(E,V,h,v,V =uafr,e; coordinates of the particle).

absolute dynamical
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In the one-body problem the group of automorphisms consists of the group
of rotations in three-dimensional space and of time translations.

In the special relativity theory we have a situation resembling that in
Newtonian mechanics: »

(E,V,g; world-lines of points, clectromagnetic field, ...),

absolute dynamical

the group of symmetries is of course the Poincaré group.
In quantum theories, the situation hardly changes. Let us consider the
quantum theory of a certain system characterized by the Hilbert space #

and the Hamiltonian operator . Here, we have the following elements:

(o, H ; history of the system’s states).

absolute dynamical

Now, the group of automorphisms is the set of unitary operators in the space #
which commute with the Hamiltonian operator.

In all the above-mentioned cases, the group of symmetries is a Lie group,
and, thus, the actions are continuous and these groups have a finite dimension.
The situation is different in the general relativity theory:

(E; g, electromagnetic field, matter velocity field, ...).

Here, the only absolute element is the “bare” spacetime E itself. The scalar
product g is subject to the Finstein equation, and is thus not an absolute el-
ement.

The group of symmetries is the full group of automorphisms of the mani-
fold E, which is not a Lie group. Some physicists, notably Fock, consider this
situation unsatisfactory. Fock proposes that in spacetime another plane
metric % should be introduced as an absolute element:

(E,n; g, as above).

[~ -
absolute dynamical

The scalar product 7 is to be determined by singling out a certain class of systems
which are called harmonic and function as inertial systems. It appears that
such a bi-metric theory is not so good, for it is difficult to give a physical inter-
pretation of the metric # (or, which is really the same thing, that of the corre-
sponding inertial systems).

Let us now deal with the consequences of the presence of symmetries and
general invariance. In this connection, let us introduce the notions of the
differential form and the Lie derivative. 7

Differential forms play a particular role among tensor fields, since we can
differentiate them without resorting to the notion of an affine connection. It
is worth noting that we can fully formulate the Maxwell differential equations
in the language of differential forms.
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The differential form w of degree p is an antisymmetric tensor field of type
(0, p). The antisymmetry means that the coordinates of the tensor field w change
sign if we transpose any pair of indices, e.g. for the form of degree 2

Wi = —Wi;.

When considered in one point of an n-dimensional manifold, differential forms

of degree p form a vector space of dimension (;) The external product of the

r4 q
forms @ and o of degrees p and g respectively is a form of degree p+¢ whose
components are given by the formula

r g 1 ~ P q
(@A), iprg = rol E FOoi,)...o0) Poiy 4 1-1p1gy5

where the summation extends over all the permutations ¢, and the + or
—sign depends on whether a given permutation is even or odd. The external
multiplication is linear with respect to both arguments; it is also associative.
In general, it is not commutative, but we have

p q q Vg
woro = (—DPorw.
If (x') is a coordinate system on the manifold, forms of degree 1, dx’ span
the space of forms of degree 1 at each point, while their external products

provide the basis for any differential forms, i.e. each differential form has the
form

o =w; ; dx'sa ... A dxb.

yoip
If w is a form of degree p > 0, we can determine its internal product with
the vector field X, which is a form of degree p—1 given by the formula
X_lw = pXhay,, . dx"a ...oAdxie.
We define the operation of external differentiation of differential forms
by the formula
do = dwy;, ;A dxA oA dxe.

We can see that this operation is a generalization of the differential of a func-
tion.

Let E be a differential manifold (later—spacetime) and let there be given
the differentiable mapping

RxE> (t,p—ep) € E,

satisfying the conditions

Pr °Ps = Prrs>,  Po = idg.
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The set of functions {¢,:t € R}satisfying these conditions is called a one-par-
ameter group of transformations of E. We can readily notice that

= Qg
and, hence, we can see that this set is a subgroup of the group of diffeomor-
phisms of the manifold E.
Given a certain one-parameter group of transformations of E, we can trans-
port functions, vector fields, fields of differential forms and other tensor fields
onto E. If f1E — R we define the transported function by the formula

Je=fo0..
We transport the differentials of the function according to the equation

(df), = d(fD),
and then we generalize this definition to any differential forms. To transfer
the vector field Y, we use the equation

Y,_ldf, = Y_]df.
It is not difficult to generalize the notion of transport to any tensor field, but
we shall not describe it here.
Through any point p € E we can trace a curve ¢+ p(¢), defined by the
equation

p(t) = ¢p)-

This curve is called the orbit of the point, p generated by the one-parameter
group of transformations, while the set of the orbits of all the points of E
consists of the trajectories of this group. Exactly one trajectory runs through
each point p € E. The vector field X, tangent to all the trajectories of the group
is called the field induced by this group (Fig. 13.1).

p

t—g,(p)

Fig. 13.1

We call the following expression the Lie derivative of the tensor field ¢
with respect to X

d
f’/’ = dar Yelt—os




127

which is a tensor field of the same type as that of the initial field y. The vanish-
ing of the Lie derivative of the field v,

£y = 0,
X
is equivalent to the constancy of the field ¢ on the trajectories of the group:

Y =9
for any 7 € R.
Let us note that for any differential form we have

fo = d(X_Jw)+X_|dw.
x

Let there be given a certain physical theory (E, y; w) where E is spacetime,
y describes absolute elements different from E and y describes dynamical
elements. Let the dynamical equations of this theory result from the variational
principle

8{2=0,

2
where we assume that the variations ¢ vanish on the boundary of the region £2:
dplao = 0.

From this variational! principle, there follow the field equations of the quan-
tity p, which we represent symbolically as ¥ = 0.
The four-form 4 depends on y and y. One proves the general identity

£A =T Ey+¥ £p+dy,
X x X

where y is a three-form. Moreover, because 1 is a four-form, and therefore
dl = 0, we have

£2 = d(X_JN).
X
If the absolute elements y are constant along the trajectory of the field X
£y =0,
X
and the dynamic equations
¥ = 0,
are satisfied, the conservation law of the quantity y—X_|A4 is valid:
d(x—X_1A) = 0.

Usually, the equation £y = 0 determines a certain finite-dimensional Lie
X

algebra of vector fields on £ which are tangent to the trajectories of the group
of automorphisms of the absolute elements, i.e. to the group of symmetries
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of a given physical theory. A certain conservation law corresponds to each
group of symmetries.

A particular situation arises in the relativistic theory of gravitation where,
apart from E, there are no absolute elements, and the equation f’y =0 1

satisfied by any vector field X, corresponding to the principle of general in-
variance. In this case, we have the identity

Yy =dX_li—p.
x

If the field X vanishes on the boundary of the region £,
X IB.Q = 07
then y vanishes there, too, and using the Stokes theorem we obtain that
S Yiy =0,
02 X
which leads to the so-called generalized Bianchi identities. For example, in the
theory of gravitation they have the form
V,GY =0,
and in electrodynamics,
ViV, F¥)y = 0.

The logical structure of the general relativity theory is slightly different
from that of other classical field theories. Let us take, e.g., electrodynamics.
Here, from the Maxwell equations and from the equations of motion, there
follow the conservation laws of energy and momentum given by the equation

V, TV = 0.

The case is different in the theory of gravitation., Here, from the Finstein

equations,
G = xTV,

by taking into account the identity V;G* = 0 we obtain the conservation laws
Vj T” == 3

and hence, the equation of motion of particles.

Let us show, as an example, how the equations of motion result from the
Einstein equations for perfect dust, i.e. for a system of non-interacting particles,
whose energy-momentum tensor has the form

TV = Pou'’
where g is the density of dust and ' are the components of the four-velocity

field. The conservation law of energy and momentum, resulting from the
Einstein equations has the form

0 = V;(ou'v’) = u'V,(ow’) + ou!V, 4.
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Let us note that the second term in this formula contains a factor equal to the
absolute derivative of the four-velocity along the world-line of dust

w'V;u' = Du'[ds.
Since the velocity four-vector is normalized
uiui = 1,

differentiating this equality along the world-line of dust, w obtain

Multiplying the equation expressing the conservation law of energy and mo-
mentum by !, we obtain

Vj(@llj) = 03
i.e. the continuity equation expressing the conservation law of mass. Moreover,
returning to the initial equation, we have

Du'

=0,

ds

i.e. the equation of free particle motion. .
In electrodynamics, we can propose the form of the electromagnetic field

and find the motion of charges in this arbitrarily defined field. We can also do

the opposite: having a given motion of charges, we can determine the field.
This is possible because the equations of motion and the field equations are
independent. In the general relativity theory, on the other hand, it is impossible
to do so, because the equations of motion result from the field equations.
This causes complications: we have to solve the motion and field equations
simultaneously. In the general case, we cannot solve the problem of motion
exactly. Einstein, Infeld and Hoffmann, and, independently, Fock, gave an
approximate procedure for dermining the world-lines of matter, consisting
of expanding all the functions occurring in the field equations with respect
to negative powers of the speed of light.

|
]
.
{




CHAPTER 14

Algebraic Classification of
Gravitational Fields

In Chapter 11 we said that the Riemann tensor plays the role of the inten-
sity of the gravitational field. Therefore, the algebraic classification of gravita-
tional fields is concerned with the Riemann tensor. A full classification should
concern both the Ricci tensor and the Weyl tensor. Moreover, since the Ricci
tensor is directly related to the sources of the gravitational field, its classi-
fication in fact concerns the sources, namely the energy-momentum tensor.
Therefore, in the first part of this chapter, we shall classify the energy-mo-
mentum tensor, and in the second part, we shall deal with the proper classifi-
cation of gravitational fields, i.e. the classification of the Weyl tensor.

We shall denote the energy-momentum tensor by T and consider it a linear
mapping of the tangent space ¥ at a certain chosen point of spacetime into
itself. That is, if « = (u’) € V, then Tu denotes a vector from ¥ with the com-
ponents Tju’. The condition of symmetry of the energy-momentum tensor
takes the form

g(Tu, vy = g(u, Tv)

foranyu,veV.
Let us bear in mind that we call the vector « # 0 an eigenvector correspond-
ing to the eigenvalue 1 ¢ R, if

Tu = Au.

The eigenvector exists if and only if 1 is the solution of the characteristic
equation

det(T'— Zid) = 0.

If a complex solution of this equation exists, there are no (real) eigenvectors;
however, complex eigenvectors, i.e. eigenvectors belonging to ¥<, do exist.
We say that the subspace W < V is invariant (for the operator T), if TW < W.
We call the invariant subspace W, = {ue V:Tu = Au} an eigenspace corre-
sponding to the eigenvalue A.

If all solutions of the characteristic equation are real, then there exists
a basis in ¥ such that the tensor T takes the canonical Jordan form. This is the
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block-diagonal form, where the diagonal is made up of so-called Jordan cages,
i.e. matrices of the form

T A
In Segré notation, the dimensions of successive Jordan cages are usd to de-
termine the type of linear transformation. For example, type {2, 1, 1] denotes
the following canonical Jordan form:

M1 0 0
0 4, 0 0
00 2,0
0 0 0 1

In the case where the eigenvalues corresponding to the different cages are
equal, we speak of degeneration. To mark this fact, we put the numbers repre-
senting the dimensions of the appropriate Jordan cages in round brackets.
In the above example, if 1, = 1, # 13, we have the Segré type [(2, D1].
If complex solutions of the characteristic equation (complex eigenvalues)
exist, then there is a basis in ¥ such that the tensor T (extended in a natural
way to V') takes the canonical Jordan form. We can then also use the Segré
otation, complementing the symbol of the Jordan cage with the letter z,
if the given eigenvalue is complex. Since the tensor 7 is a real tensor, the
complex eigenvalues always occur in pairs': A A

We know perfectly well that in the case of Euclidean space, a symmetrical
linear transformation is of the diagonal type [1, 1, 1, 1], or is one of its degen-
erations: [(1,1) 1, 1], [(1, D, D], [(1,1, 1) 1] and [(1,1, 1, 1)]. In the case
of Minkowski space the situation is more complex. Nevertheless, a number
of facts known in the Euclidean case are still valid. They are given by
Theerem 1

If Wis an invarjant subspace, the subspace

W, = {ueV:g(u,v) =0 forallve W}

is invariant. If W is an invariant spacelike subspace, there exists an orthonormal
basis in W such that T, is diagonal.

We leave the proof to the reader. We still need

Theorem 2
There exist invariant subspaces of arbitrary dimension.

Proof: In the case of real eigenvalues only, the thesis follows from the
canonical Jordan form. If there exists a complex eigenvalue, the real and
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imaginary parts of the corresponding eigenvector span the two-dimensional
eigenspace W. The subspace W cannot be spacelike, since in this case the
symmetric transformation Ty is diagonal, and therefore it has only real eigen-
values. The subspace W cannot be null, either, since then W nW1 would be
a one-dimensional null eigenspace, and then there would exist in W a real
eigenvector and the corresponding real eigenvalue. Therefore, the subspace W
is timelike. In the invariant spacelike subspace WL, there exist one-dimensional
invariant subspaces W, and W,, generated by eigenvectors; W+ W, and
W+ W, are three-dimensional invariant subspaces.

From these theorems, we can include the symmetrical tensor 7" within one
of four classes: I, C, II and III. Here are their characteristics:

1. There exists a timelike eigenvector

If such a vector exists, the subspace orthogonal to it is an invariant three-
dimensional spacelike subspace where the linear transformation 7 is diagonal.
There exists, then, the orthonormal basis (e, €y, €>, €3) in ¥ such that T
has the following canonical form:

g
(1)) =

T = Agebel— A el el —d,ebeb— Azebel.

C. There exists an invariant two-dimensional timelike subspace without
{real) eigenvectors

From the proof of Theorem 2, such a situation occurs if and only if
T has a complex eigenvalue. In the invariant two-dimensional timelike sub-
space W, we shall choose a basis (k, /) of W made up from null vectors, such
that g(k, ) = 1. In this basis

Tk = ak+pl,

Tl = yk+0l.
The symmetry condition g(k, TI) = g(I, Tk) gives 6 = a.
For T|,, the characteristic equation has the form

A2 —20h+a?—fy = 0.

A real solution does not exist if By < 0. Using the Lorentz transformation
(k> e¥k, I+ e~? [), we can achievey = — f. Taking the orthonormal eigen-
vectors (e, , €,) from the subspace Wi, we obtain a basis (k,/, e, e of V
such that, finally,
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or
TY = oK'k’ + V) + B(IF — k'k) — o el ) — 4, € e,
where f§ # 0. The complex eigenvalues are the numbers 1 = a+if and

A = a—if, while the corresponding eigenvectors have the forms u = k—il
and u = k+il.

II. There exists an invariant two-dimensional timelike subspace with a non-
timelike eigenvector

Let us denote this subspace by W and this eigenvector (necessarily null)
as k. In the basis (k, /) of the subspace I¥, constructed as in the class C, taking
into account the symmetry conditions, we have

Tk = Aok,

Tl = OCk + 201 5
where « # 0, since otherwise we find ourselves in class I. Using the Lorentz
transformation (k +— ek, [+~ e~¥ [), we can achieve a« = +1. The sign of «
is an invariant of Lorentz transformations; thus, depending on its value, we

have subclasses 11, and II_ . In the basis (k, 1, e,, e,) of V, with orthogonality
properties such as in class C, we have

i 4 0
(T]) s 0 ; 3
1

O ;"2

TV = + kK + Ag(K'P + k) — A, i el — Dy ebel.
IIL. There is no invariant two-dimensional timelike subspace

In this case, we have the pair W, WL of invariant two-dimensional null
subspaces. The null eigenvector k € Wn WL, together with the normalized
spacelike vectors e, and e,, span the subspaces WL and W, respectively, We
have

Tk = Aok,
Te, = ak+ e,
Te, = fk+Ae,.

Both numbers A, and A, cannot be different from A,, since then spacelike
eigenvectors would exist in both subspaces W and Wt and the subspace
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orthogonal to them would be two-dimensional, timelike and invariant. We
can therefore take 4, = ;. Now if A, # 1,, then a spacelike eigenvector
exists in the plane W. If, on the other hand, 4, = 1,, then a spacelike eigen-
vector exists which is a combination of e, and e,. In both cases we can assume
that § = 0. Since « # 0, rescaling the vector k we can obtain a = 1. Choosing
the vector / as in the previous cases, we obtain from the symmetry conditions,

Tl = 29k+ Ay l—e;.
Performing the Lorentz transformation

e > e —yk,
2
1+-+1+l’2—k~yel,

we eliminate the coeflicient y; ¥ = 0. In the basis (%, e,, [, €,) of ¥ we thus
obtain the following canonical form:

(T) =

or
TH = —elki—Ke]+ A (k'V +1'ki~ele])— A, e eh.

The above classification is complete in the following sense:

Theorem 3
The symmetric tensors 7} and 7"} can be transformed onto each other by
means of the Lorentz transformation 1}

T = ALATH,

if and only if they belong to the same class of the classes I, C, II,, 1I_, Il
and their corresponding eigenvalues are equal to each other.

The Plebanski classification [42] is more detailed. In the Plebafiski nota-
tion, we give the multiplicities of particular eigenvalues in the decomposition
of the characteristic polynomial into the prime factors (neglecting 1), and also
the letters T, C, N, S, in particular if these subspaces are timelike, com-
plex, null and spacelike, respectively. We give the dimensions of the maximal
Jordan cages corresponding to these eigenvalues in round brackets as indices.
Thus, the particular classes decompose into the Segré and Plebanski types in
the following way:
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Class Segré type Plebanski type
I L1, 1,1] [T—=81—8,~83] 11y
(L, DL 27— 81— 821 (aus,y
[, niL1 [T-281~52] a1y
I, Ha, 1 [27-281 10y
{1, 1, 1] B37—-S8Ta,
[, 1, H1] [T—-3571y
[a, 1,1, 0] [4T1 )
C [Z, E, 1, l} [C“'C“Sl"SZJ (1111)
Iz, 2(1, D] [C—C~28T1n
I 2,1, 1] RN—S:1—52] 211y
(IL, and I1) 21, D] 2N~-25] 21y
[2,D1] [BN=STen
[(23 11 ])] [4N] (2)
i 3,11 [BN=S)io
(3, D] [4N] 3y

The whole classification described above concerned an arbitrary symmetric
tensor. However, apart from the fact that it is symmetric, enegy-momentum
tensor must satisfy the so-called energy conditions. Namely, let «’ be a norma-
lized timelike vector directed into the future, u'y; = 1. We can imagine that
this vector represents the four-velocity of a certain observer. Then P’ = T}uw/
represents the density of the four-momentum in this observer’s system. If the
vector P! # 0, it should be a vector directed into the future: timelike or null.
This condition is satisfied if the following two inequalities are met:

T,vw >0
and
T, W TiE > 0
for all timelike vectors (and, in view of the continuity argument, null vectors) ',
The first inequality represents the non-negativity of energy, the second one
ensures that Pis not a spacelike vector.

It appears that a symmetric tensor belonging to classes C, II_ and 111 cannot
satisfy the energy conditions. Therefore, the energy-momentum tensor should
belong to class I or II... Moreover, if it belongs to class I, its eigenvalues must
satisfy the inequalities

o = 1Al Ao = 1Al Ap = |4,

while, if it belongs to class 11, similarly,
Ao 2 [l 4o 2 |42].
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Tt would be interesting to see to which types the most frequently used
energy-momentum tensors correspond. In the case of the perfect fluid,

T4 = (c*o+p)u'u’ —pg",
we have class I, the eigenvalues 1o = ¢?p, 44 = 4, = A; = —p and the Ple-
baniski type [T—3Sl11). In a special case, p = —c?p, the energy-momentum

tensor has the form of the cosmological term and belongs to type [4T],.
For the electromagnetic field

4nTH = — F*Fj+ »i— gUF, F¥,

we should distinguish between the general case and that of a plane wave.
In the general case, there is a reference system, namely the orthonormal basis
(eo, ey, €5, €3), where the electric and magnetic fields are parallel E||Blle,.
We can readily calculate that in this system

T = o (E2+ B*)(ebef—e el +ebel+ezeh).

This energy-momentum tensor belongs to class I, type [27—2S](11), While the
eigenvalues are Ao = A; = — 1, = —7%; = 3.(E >+ B?); they are thus equal
to + the energy density.

The tensor of the electromagnetic field of the plane wave type has the form

Fij = k,-ej—-eikj,

where k' is a null vector and ¢ is a spacelike vector orthogonal to k’. We can
normalize the vector €' in any way; choosing e;e! = —4m, we obtain

Tij == klk iz
thus, it is a tensor of class I1, , type [4N].,, whose eigenvalues are all equal
to 0.
Before we pass on to the classification of the Weyl tensor, let us discuss the
Hodge dualization of external forms. In an oriented Minkowski space, we can

assign to each p-form w, which has in the “right handed” basis the compo-
nents w;_; , a (4—p)-form xw with components given by the formula

1 i ip

*Wi,, i, = F €L, 0
This operation is determined correctly, i.e. it does not depend on the choice
of the “right handed” basis. Equivalently, we can say that the Hodge duali-
zation commutes with the action of linear transformations with a positive
determinant on the forms. This operation has a number of interesting pro-
perties. Firstly, it is a linear isomorphism of the space of p-forms onto
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that of (4—p)-forms. Secondly, it changes the sign of the scalar product of
the forms:

1 T 1 i
«(4:}7'— :k(l)ipﬂmu*'[ 4 = _‘*ﬁ wi}-"ip T P,
Thirdly, for forms of degree 0, 2 and we have 4, x+w = —w; and for forms of

odd degree xxw = w.

We are interested in real and complex two-forms. We call the complex
two-form w self-dual if sw = —Iiw, and antiself-dual if *w = iw. We can uni-
quely represent any complex two-form o as the sum of a self-dual form w*
and an antiself-dual one w~, where

wt = —; {w +i*w).

If the two-form w is real, then w™ = w*; therefore, there is a one-to-one
correspondence between real and self-dual (or antiself-dual) two-forms. The
spaces of self-dual and antiself-dual forms are orthogonal.

Acting on self-dual two-forms

wify > Ak A}

o,

the proper Lorentz transformation leaves them self-dual and preserves their
scalar products. From the orthonormal basis (¢°, ¢!, €2, €3) in the space dual
to the Minkowski vector space, we can form an orthonormal basis in the space

of self-dual two-forms (7%, 72, ©3), given by the formula
1 abe b ¢ 4 1,0 a
r“:ie e’Aef+1e” A el

where a, b, ¢ = 1, 2, 3. Therefore, the space of self-dual two-forms is a three-
dimensional Euclidean complex space. The Lorentz transformation ¢t = Aié’
induces in this space the orthogonal transformation ' = Of1°, where

0§ = AJA5— A8 —ie* A5 A¢.

The map A+ O is a homomorphism of the proper Lorentz group L, onto
the group SO(3, €) of complex orthogonal transformations with unit de-
terminant. Moreover, the group LI is isomorphic to SO(3, C).

Since the Weyl tensor is skew-symmetric in two pairs of indices, we can con-
sider its left and right Hodge dualizations:

ijkl ijmn Kl
«C - L Cmn H

[51.7 klmn i j
Ck - € ijn
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and the left and right self-dual tensors. We can also perform similar operations
on the Riemann tensor, however, in contrast to the Riemann vector, the Weyl
vector has a certain special property, namely

kL o, ikl
*C* = CuH¥,

from which it follows that the left and right self-dual tensors are equal to
each other:
+Cijkl - C+ijkl_

Since this is so, the mapping Q:w; — —%C{*j"’w,;‘, maps the space of self-dual
two-forms into itself. Since it fully describes the Weyl tensor, the eigenprob-
lem in the form
1
2

leads to its classification. We can write it in the three-dimensional form

R+ +
Ci¥ iy = lwij

nga == Awb »

where the matrix Qf, representing the mapping Q in the basis (7%), has the form

i
— acd i ed +0a
Sy = —'78 C 0,,+C ob-

Thus, we have assigned to the Weyl tensor a symmetric and trace-free
mapping of the space of complex self-dual two-forms into itself, The corre-
spondence is one-to-one. The classification of the mapping Q gives the sought
classification of the Weyl tensor.

The mapping O may lead to the following (complex) Segré types: [1, 1, 1],
[(1, D 1], [2, 1], [(2, D], [3]. Let us note that it follows from the trace-free
condition that only 0 = 0, ie. C';; = 0 corresponds to type [(1, 1, D]; in
this case, we say that we are dealing with type O.

The classification of the Weyl tensor is particularly interesting, if we repre-
sent it in the language of two-component spinors. Let us first consider the
spinor image of the Riemann tensor

RABCDEFGH — U;AEUJBFU]‘CGO'IDHRUM.

The symmetries of the Riemann tensor lead to the reduction of independent
components of this spinor.

First of all, taking into account the antisymmetry of R'/* in the first and
the last pairs of indices and the fact that it is real, we obtain, similarly as for
the electromagnetic field, the result:

RABCDEFGH _. yABCD (EF (GH + XEFGH

811 B SCD 4+ @ABGHSCD 8EF + @EFCDEAB EGH ,

where the spinors X4%¢? and @456H are symmetric in the first and the last
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pairs of indices. The symmetry with respect to the transposition of the pairs,-
RUM — RMi gives two conclusions. Firstly, the spinor @45H js Hermitian::
(PABCH _ (pGHA4B
Secondly,
XABCD _, yCDAB
this, in turn, implies the following form of the spinor X 45¢% ;
XABCD — TABCD+QBC(6AD8CA+ SDB SDB)
where we denoted

‘;[“/ABCD = Y(4BCD)

The quantity R written in the spinor image is a spinor built from &’s
multiplied by 2— . Its vanishing thus gives one condition: 2 = Q.

Finally, we have three quantities describing the Riemann tensor: {2, $4B6H
and W4PCP A representation of the group SL (2, €) acts irreducibly on each
of them. The scalar £ is expressed by the curvature scalar 2 = ;= R. The
Hermitian and symmetric spinor ®486H g the spinor image of the trace-
free Ricci tensor

RV — —i»gifR,
while, the full symmetric spinor W45 describes the Weyl tensor, namely,
the spinor image of the Weyl tensor is given by the formula
(CABCDEFGH _ Qr4BCD BF Gl +?{'E'F8;:H £AB D
An interesting fact is that in the case of an empty spacetime, the Bianchi
identity reduces to

V. WABCD _ 0

and thus to a covariant generalization of the equation of the fields of massless
particles with spin 2.

The principal directions of the spinor ¥42¢? which give rise to the prin-
cipal directions of the Weyl tensor, are determind in the following way:

YABCD _ a(AﬂB,ycaD).

The Weyl tensor is of the general type, also called Petrov type 1, if none of its
principal directions coincide. In the opposite case, we say that the Weyl
tensor is algebraically special. Depending on the way in which the principal
directions coincide, we distinguish the following four Petrov types: II, D, III
and N. These coincidences and the corresponding Segré type of the mapping Q
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are given in the table. The classification of the Weyl tensor given here was
known to E. Cartan [5] already in 1922, Independently, it was discovered by
A. Z. Petrov [41]; in the form represented here we owe it to R. Penrose [39].

Coincidences of principal Segré type of mapping

Petrov type directions Q

I 2 [1,1,1]

1 .2 2, 1]

D fiz @, nu

111 Tt {2, Bl

N 28 3]

0 — [a,1,1]

The algebraic classification of the Weyl tensor is of particular significance
for the problem of gravitational radiation. Here, we have an analogy with the
electromagnetic field. That is, the field of electromagnetic radiation far away
from the source takes the shape of a plane wave, More specifically, if » is the

distance from the sources, then for r — oo (when the advanced time is
kept fixed) the tensor (or spinor) F of the electromagnetic field has the
asymptotic form

N I 1

where N and I denote the algebraically special and general types, respectively.
Far away from the sources the principal directions of the electromagnetic field
coincide, while close to them they separate.

A similar phenomenon occurs for the gravitational field. Here, the asympto-
tic behaviour of the Weyl tensor is determined by the so-called “peeling off”
theorem:

N m 11T G 1 1
C= 7*+75‘ +73— +r7+75“+0(——6‘).

In this formula, the symbols of the types are the same as those in the table;
moreover, G denotes a field of type I where all the principal directions are
geodesic.




CHAPTER 15

A Review of Phenomena
Predicted by the Einstein
Theory of Gravitation

The views which, in the present-day understanding, make up the general
relativity theory, may be arranged in three groups.

1. The assumption that spacetime is a four-dimensional differential Rie-
mannian manifold with the metric tensor signature (+, —, —, —). The inter-
pretation of the length of the arc s as time measured by ideal clocks. The
interpretation of the timelike geodesics as the world-lines of free falls,
and that of null geodesics as light rays. Moreover, we have the “principle
of minimal gravitational coupling”, which establishes the form of the equations
of fields or equations of particles in the general theory of relativity.

According to this principle, we need to take equations which are valid
in the special theory of relativity, write them covariantly (i.e. so that their form
does not depend on the choice of the reference system), and then assume the
same form of the equations in the general theory of relativity. The construc-
tion of dynamical equations according to this recipe is sometimes ambiguous.
Let us take, e.g. the Maxwell equations

o 4 .
V;FY = ”"—:—j'a ViFut+ Vi Fy+VFy = 0.

In the special theory of relativity these equations are equivalent to the following
equations for the four-potential:

04" = ~c-ji, V4 =0,

but in curved spacetime these two sets of equations are not equivalent. In the
general theory of relativity it is assumed that the electromagnetic field is
described by the first system of equations because, among other things, this
system results from an appropriate variational pinciple.

2. The principle of general invariance, which can be expressed in the follow-
ing form: the field g;; is sufficient to describe the spacetime relations and the
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gravitational field, and is subject to dynamical equations. Accordingly, apart
from spacetime itself, there are no absolute elements.
3. The Einstein equations

Gij = %nj‘

We can draw some conclusions just on the basis of the first group of assump-
tions. They include the form of the metric for a weak gravitational field, ob-
tained in the previous chapter,

2
8oo = 1+”'ZL .
4

On the same basis, we obtain the “gravitational redshift”, i.e. the phenom-
enon of change in the frequency of light propagating in the gravitational
field.

In keeping with the postulates of the first group, light propagates along null
geodesics. How do we find them? Let ¥ satisfy the eikonal equation

B‘I’ ¥ B
3x' oxl
and let

8![1
#

Then, the curve A — x(4) satisfying the equation

dx? Nid

=& e
is a null geodesic contained within the hyperplane ¥ = const.
Let us take a stationary field g;;, i.e. such a field that in a certain reference
system

where ¢t = x°. In the stationary field there are solutions of the eikonal equation
in the form :

Y(x) = —Qt+D(x%).
Let us imagine two observers “at rest”, i.e. those for whom x*, x?, x> = const.
Let observer 1 emit electromagnetic waves to observer 2 (Fig. 15.1). The sur-
faces of constant ¥ are the surfaces of the constant phases of these electro-
magnetic waves., The time interval

As = {ds = ¢ [ Vgoo a1 = c¥/go0 [dt = c)/ 00 At

between the same two phases measured by observers 1 and 2 is different, if goo
has different values at the points of spacetime where these observers are.
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Fig. 15.1

Accordingly, the frequencies of the electromagnetic wave measured by these
observers are different. Their ratio is

w, _ As w}/gooh

Wy As, ]/ 8ool2 .
For weak fields, since goo = 1+ (2p/c?), we obtain

w oy

2 1+ _(’f}__zgi

Wy
For example, if 1 is a star or the Sun and 2 is the Earth, we can neglect the
potential ¢,, since it is small as compared with ¢, and, since ¢, < 0—as it
is the potential of an attractive force—we obtain

w,; < wy.
This is the phenomenon called the “redshift”. The phenomenon of change
in the frequency of electromagnetic waves in the Earth’s gravitational field
has been confirmed by means of the Méssbauer effect. It was found to agree
with the above formula with an accuracy up to 109 [44].
In the Newtonian theory of gravitation, for a spherically symmetric body
with mass M, we have the gravitational potential

kM

@ = -

therefore, in the general theory of relativity for the same situation we should
expect
2kM

re?

Loo = 1—

It turns out that the unique solution of the Einstein equation for the empty
space (outside the body)

GU = 0,
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on the assumption of spherical symmetry, is the Schwarzschild spacetime,
whose metric form in an appropriate coordinate system is

-1
ds? = cz(l—-}—liy«)d 2 ( 2:212” ) dr? —r2(d62 +sin6dg?).

Schwarzschild [48] found this solution as ealy as 1916. Just as in the New-
tonian theory, this solution depends exclusively on the mass of a body and not
on its (spherically symmetric) structure; moreover, it is always static—even
if the body undergoes spherically symmetric oscillations.

In the Schwarzschild spacetime a special role is played by a null hyper-
surface given by the equation r = r,, where r, = 2kM/c? is the so-called gravi-
tational radius of the body. It was velieved for some time that the geometry
of spacetime on this hypersurface was singular. This did not lead to essential
difficulties, since it was believed for a long time that for all bodies the gravita-
tional radius is much smaller than the geometric radius, and therefore the
apparent singularity of the metric at » = r, does not play any role at all

(Fig. 15.2). As an example, we shall give the gravitational radii for a few
bodies: ‘

geometr, Ié

%

Fig. 15.2

Schwarzschild
Schwarzschild

for the Sun rg = 3 km,

for the Earth = 0.89 cm,

for a neutron rg 10~3% cm.

For some time now, in connection with the theory of the late phases of
evolution of stars which have fired all the available nuclear fuel, researchers
have admitted the existence of material objects with dimensions of the same
order of magnitude as those of their gravitational radii.

To verify that the surface r = r, is not—as it would seem—singular, but
null, it suffices to replace the time ¢ by the time ¢’ defined by the formula

-3
2kM) ar,

rc?

cdt’ = cdt~—(1——

leaving, the other coordinates r, 6, ¢ unchanged.




145

The light cone is tangent to the Schwarzschild sphere, its past part lies on
the external side and its future part is on the internal side (Fig. 15.3). Hence,

I"<f’g f‘:i‘g r >

:
/

Fig. 15.3

it follows that particles can only enter the Schwarzschild sphere, but they
cannot leave it. It turns out, moreover, that an observer on the outside can
never receive signals notifying him that a particle has reached the sphere.

The Schwarzschild sphere can act as a trap for particles. In certain condi-
tions, if the gravitational attraction dominates the pressure, the matter of a
a star penetrates into the Schwarzschild sphere and the star “collapses”-—this
phenomenon is called gravitational collapse (Fig. 15.4).
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Star surface
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Fig. 15.4

According to present-day views, the gravitational collapse concerns all
stars which have fully fired the nuclear fuel, and in the last stage of development
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have a mass exceeding a certain critical value, of the order of a few times the
mass of the Sun.

This is connected with the problem of pulsars. It is thought that pulsars are
rotating neutron stars which have fired all of their fuel, but their mass is too
small for them to collapse. They are characterized by enormous densities and
short radii, which means that the processes occurring in such stars should be
significantly influenced by the effects of the general relativity theory.

i

! ] Sun ; Whi‘te_z dwarf \l Neutron
| l (Sirius B) star
, .
Radius r | 6.960 x 10°cm l 5.4x10% cm 10% cm
| Density o 1.410 g/em® | 3.00x 105 gjem? 101 gjem®
| Fglr 4%x10°° } 5x 1074 6x102
| . |

On the basis of the Schwarzschild solution, we can predict other effects of
the general theory of relativity, which include the motion of the. perihelia of
planets. In a spherically symmetric gravitational field, a particle moves (if
its motion is bounded) along a rotating ellipse (Fig. 15.5). The advance of the

4¢

Fig. 15.5

perihelion after one rotation is given by the formula

A(p == —325“.

This advance of the perihelion of the planets of the Solar System was ob-
served as early as the 19th century. For Mercury, this advance is 1142" per
hundred years, about 1100” of which has been explained by perturbations
caused be the Newtonian interaction of other planets. To be accurate, 43.1”
4+0.4" per century is left. From the above formula, we obtain 43.0"’ per century,
which is a striking agreement.

/TR

Fig. 15.6
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Another effect, obtained by using the Schwarzschild solution, is the deflec-
tion of light rays close to stars (Fig. 15.6); we obtain here the result

Ap = M
oc

Substituting for M the mass of the Sun and replacing p by its radius, we ob-
tain Ay = 1.75". The appropriate measurements, carried out during solar
eclipses, involve quite large experimental error, so that they confirm the valid-
ity of the GRT only qualitatively, giving a result between 1" and 2.4” {2].
Since 1969 research has been carried out on the deflection by the Sun of radio
waves coming from quasar 3C279. The results of these measurements are much
more accurate than the results of optical measurements, and they agree with
the GRT predictions with an accuracy up to 10%.

In 1964, Shapiro [49] (Fig. 15.7) predicted another phenomenon, consist-

Mercury

min
km

200 min km

Earth

Fig. 15.7

ing in a time delay of electromagnetic signals passing close to the Sun. The
delay of a signal travelling from the Earth to Mercury and back with respect
to the passage time far from the Sun is supposed to be 200 us. The satellites
Mariner 6 and Mariner 7 gave the most accurate results. They agree with the
Einstein-theory predictions with an accuracy up to 4%. Here, the Brans-Dicke
theory gives a result which differs from the Einstein theory by 7%.
Observations of the deflection of light rays have shown that the Einstein
theory is better than the Nordstrém theory, which assumed the validity of the
first group of assumptions making up the general relativity theory, but re-
jected the arbitrariness of the metric tensor, assuming that the metric is con-
formally pseudo-Euclidean, i.e. in a certain coordinate system, it has the form

ds? = e?(c?dt? —dx? —dy*~dz?),
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and proposed, instead of the Einstein equations,
R =xT, where T=T}.

This theory, however, failed to give the deflection of light rays, since the electro-
dynamic equations in vacuum are invariant with respect to conformal transform-

ations.




CHAPTER 16

Gravitational Waves

Einstein validated theoretically the existence of gravitational radiation and
gravitational waves soon after he had formulated the equations of the general
theory of relativity [17]. Einstein’s calculations at that time were based on
approximate linear field equations and were often criticized for that reason;
the linearization of the equations changes their properties significantly. Some
conceptual difficulties in this field are related to the arbitrariness of coordinate
systems. Taking the metric of a flat space in rectilinear coordinates and then
carrying out a transformation of the form

x = x+f(x—ct),

we obtain a metric tensor with components looking as though they described
wave motion. It appears therefore that, with an appropriate choice of the
coordinate system, we can regard any gravitational field as a wave. Doubts
arise from the fact that, because of its nontensorial nature, the gravita-
tional force is not a well-defined notion, and neither is energy. However, very
numerous and detailed studies on gravitational radiation, based on exact field
equations and analyses of the invariant geometric properties of spacetime,
have shown that Einstein’s predictions were correct, confirming the equations
which he obtained for the radiation power of isolated systems,

A large number of notions related to gravitational radiation are based on
an analogy between electromagnetism and gravitation. The cornerstone of this
analogy is the similarity between Coulomb’s and Newton’s laws, or, in other
words, the fact that Poisson’s equation is the basis of both electrostatics and
the nonrelativistic theory of gravitation. The exclusively attractive nature of
gravitational forces and the identity between the gravitational charge and the
inertial mass are indications that we cannot take this analogy without quali-
fications.

Let us first consider a system of electric charges described in the special
theory of relativity by the density o(r, ). The solution of the wave equation
for the scalar potential has the form

1 ’ R .
(P(r, t) = S"-R*Q(l', tr“*—;)d3x~,
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where R = [r—r'|. Let v, L and A denote, respectively, the typical charge vel-
ocity, the linear dimensions of the region where charges move, and the typi-
cal length of electromagnetic waves generated by them. In the wave zone where
r » A, the distance R in the denominator of the integrated function can be
replaced by r. In the nonrelativistic case v <€ ¢ and L < 1; therefore, we can

’

. rer . .
replace R in the argument of ¢ by » - while we can expand g into a po-
wer series in 1/¢. Then, after integration, we obtain

-d(t—r
e o
r Ccr

(p:

where
e= Sgd3x
is the total charge, and
d0) = {ro(r, ndsx

is the dipole moment of the system,

Although the scalar potential ¢ does not give full information about the
electromagnetic field, since the essential part of information is contained in the
vector potential, the above equation turns out to be sufficient for estimating

the order of magnitude of the amount of radiated electromagnetic energy in
a dipole approximation. In the wave zone, the electric field is of the order. of

|grad | ~ d(z—r/c)/c*r+ O(1/r?), and the magnetic field is of the same order.
This information is sufficient for estimating the energy radiated per unit time

in the form of electric dipole waves, P, ~ dé/cs. To be exact, we have
P, = 2d2/3¢3.
Let us now consider the analogous wave equation

1 d%¢

¢ or?

= dmtkg

for the gravitational scalar potential ¢ generated by the system of masses
described by the density p. Making assumptions resembling those for the’
electromagnetic case, we reach the multipole expansion

xaxﬂQ'aﬁ(t—l‘/C) )+ "

2¢%r®

_ _pfm  xp
¢ = k(r+cr2+

where
m = S edsx

is the total mass, while

Qs = S(xa.Xﬂ"‘—;— 6aﬁr2)gd3x
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is the tensor of the quadrupole moment. To show that

BP= SQT dyx
is the total momentum of the system, we need to use the continuity equation
o+divov = 0.

The three dots in the equation defining ¢ represent higher multipoles and also
a term corresponding to the spherically symmetric moment of the order

2 ~ {r20d;x. Since both the mass and the momentum are preserved in the.
nonrelativistic limit, we should not expect the gravitational radiation to con-
tain simple terms of the monopole fype, or of the electric dipole type.
Because observations have shown that light rays are deflected when passing
close to the Sun’s surface, we know that the gravitational field should be ten-
sorial in nature. Therefore, just as in electrodynamics, the scalar potential ¢
contains only part of the information about gravitational radiation. For
example, it does not say anything about gravitational effects caused by the
rotation of bodies. These effects are analogous to those related to a stationary
magnetic field. Since the total angular momentum is conserved, we cannot
expect to obtain, in the approximation of low velocities, gravitational radiation

of the magnetic dipole type. The spherically symmetric moment Srzgd3x
would lead to a “scalar” wave corresponding to gravitons with null spin.
Such waves occur in certain modifications of the Einstein theory, e.g. in the
Brans-Dicke theory. The deflection of light rays gives evidence against such
scalar additions, so we shall neglect them. Therefore, the quadrupole compo-
nent gives the principal contribution to the energy radiated by a system of
slowly moving bodies.

By means of simple dimensional analysis, we can show from the formula
for ¢ that

c k -
Pg ~ ?§ (V(P)de'N-Z?Q&;g
Exactly, we obtain
k

Fo= 55 %

We can now use the formulae for P, and P, to compare the amount of
energy radiated in the form of electromagnetic and gravitational waves by
a system of two bodies, moving along a curve close to a circle, which have
charges ¢ and —e and equal masses m. If we limit our considerations to the
orders of magnitude, denoting the radius of the motion and its angular vel-
ocity by a and o respectively, we can write that
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(1) in the electromagnetic case

d~ea, d~ eaw?, mwia~ e?/a?,

5/2
2 er |7
P, ~ mc*w 3 ;
mc*a

and thus,

(2) in the gravitational case

0 ~ma*, 0O~ md*w®, mow*a~ km?la?,
and thus,

P, ~ mczw(

km\""?
‘5’22;) |

In both cases the amount of radiated power strongly depends on the di-
mensionless parameters

e? km
ma O g

Their ratio, e¢?/km?, is of the order of 1042 for an electron. For an atom,
e*/mc*a ~ e*[h?c? ~ 1/(137)%, while for an average binary star the ratio
km/c*a is extremely small. The exponent in the formula defining P, is higher
than that in the equation defining P., because of the quadrupole nature of

gravitational radiation. ‘
Large amounts of gravitational energy are radiated by binary stars with
very close components and short rotation periods (e.g. the system W.Z Sagittae
with masses of 0.6 and 0.03 of that of the Sun and a period of 81 minutes).
We can also expect considerable gravitational radiation during the nonsym-
metric collapse of stars [60, 61]. It is also interesting to consider the problem
of the gravitational radiation from a charge moving in an external magnetic
field. We know that certain components of cosmic radiation are a result of the
synchrotronic radiation of relativistic electrons in the magnetic field. Infeld
and Réza Trautman [26] showed that in a nonrelativistic approximation the

intensity of gravitational radiation for this problem is of the order of
Mc? ( v )“ kM
Py~ )
rfe \e¢

i

The order of the term v/c is lower for this radiation than in the case of bodies
which interact only gravitationally. Because of the difficulties related to the
notion of the external field in the general theory of relativity, however, the

physical interpretation of this result must be exercised with great caution.




CHAPTER 17

Great Numbers. Gravitation
versus Quantum Phenomena

Let us compare the electromagnetic and gravitational interactions in the
atomic domain. Let us consider the hydrogen atom. The ratio of these inter-
actions is

e?: kMm = 0.2 x 10%°,

where M is the proton mass, m is the electron mass and e is the charge of the

electron.
Such great numbers are also obtained in considering the Universe as
a whole: estimating its age and the number of particles which it contains.

Let us recall the Hubble law
v =rT,
relating the velocities of escaping galaxies, », with their distance » (measured
in light years). The constant T with the time dimension, whose value is
T = 10'° years,
characterizes the age of the Universe. In atomic time units, the value of this
constant is of the order of

2
T: ecs ~ 10%,

If we denote by p the mean mass density in the Universe, the number of
particles in its observable part is of the order (assuming that a proton is
a “unit” particle)

o(cTY3: M ~ 108°,

It is interesting to quote Dirac’s opinion of the occurrence of such great
numbers. Namely, he says that we shall not be able to explain such large
constants in any reasonable future theory which would comprise atomic and
gravitational phenomena. He therefore suggests that we should assume that
with the passage of time these quantities change in value. It is thought that

e?:RMm ~ t,
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which, assuming that e = const, M, m = const, which is reasonably.
confirmed by experiments, gives

Because of the difficulties in explaining the formation of stars and gq‘
axies, the hypothesis of the decreasing gravitational constant appears attre;f;w
tive. The formalization of this hypothesis consists in replacing the constant >
by a certain scalar field &£ which would satisfy certain equations and describe,
along with the metric tensor g;;, the gravitational phenomena. Jordan gave
one special theory with a variable gravitational constant, and Brans and Dicke
gave another. At present, attempts are being made to confirm these theories
experimentally. !

There is no doubt that gravitational phenomena, as any other, must have
certain quantum foundations. The present-day classic Einstein theory of
gravitation is certainly an approximation of a more exact theory taking into
account the quantum nature of the microworld phenomena. Probably all
physicists accept this generally formulated view. A large number of theoreti-
cians also have positive views on how to construct a quantum theory of gravi-
tation. The prevailling opinion is that it should be done following the pattern
of electrodynamics, treating the metric as a potential and substituting certain
components of this potential by operators satisfying appropriate commuta-
tion rules, etc. This procedure, although it encounters large technical diffi-
culties, related to general invariance and the nonlinearity of equations, is es-
sentially feasible. We should bear in mind, however, that not every classical
theory should be “quantized”. At any rate, we cannot do this with respect to
statistical theories. It is difficult to believe, on the other hand, that the theory
of gravitation should be a statistical, thermodynamic-type theory. The anal-
ogies between FEinstein’s theory of gravitation and the Maxwell electrody-
namics are so striking that opponents of quantizing the general theory of
relativity are a minority. We can expect, and this is confirmed by calculations
performed by various authors, that the quantized theory of gravitation leads
to effects resembling those obtained in the electrodynamics: transmutations
of particles in the presence of gravitons, gravitational corrections to dispersion
and to the energy levels of atoms, etc. We can readily foresee that these effect
are enormously small. A quantity with the dimension of length

plays the role of the coupling constant between the gravitational field and
matter. The quantum gravitational effects are proportional to the correspond-
ing powers of the ratio I/A, where A is the characteristic wavelength of the
given problem. For energies now accessible, this ratio is very small.
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It seems to us that if connecting the theory of relativity with quantum
theory brings anything essentially novel into physics, this will happen in
1 different way than a conventional quantization of the gravitational field.
We should bear in mind the fact that the theory of relativity is also a theory

«E%f the spacetime structure. It is underlain by the hypothesis that spacetime
i§ continuous; more exactly, that it has the structure of a differential mani-
‘old. This assumption seems to be valid on the grounds of classical physics,
but it is far from being a certainty, if we take into account the quantum nature
“of phenomena. Theories with continuous spacetime assume the possibility
of identifying arbitrarily close events. But this is not possible, because of
the atomic structure of matter and the finite dimensions of elementary particles.
We believe that this essential impossibility should be reflected in the structure
of spacetime just as the local indistinguishability between gravitational and
inertial forces is in a natural way taken into account in the general theory of
relativity. Of course, each change in the assumptions on the structure of space-
time would involve a thorough revision of the theory of gravitation and the

whole of physics.




CHAPTER 18

Cosmology

Cosmology is a field of physics whose task is to describe the Universe as
a whole. Cosmology neglects all local inhomogeneities and studies the ge-
ometry and motion of matter averaged over very large areas. The matter in the
Universe is regarded as a fluid whose particles are clusters of galaxies. We
assume that all sufficiently large regions of the Universe are the same in terms
of the distribution and motion of matter. This statement, which has been
confirmed by astronomical observations over the scale of 10° light years, is
called the principle of spatial homogeneity of the Universe, and provides the
basis of most cosmological models.

The mathematical counterpart to this principle is the action in spacetime
of a certain Lie group G, whose orbits are spacelike hypersurfaces which
fill the spacetime. All the geometrical quantities describing the state of matter,
namely the metric tensor, connection, the four-velocity of matter, the energy
density, pressure etc., should be invariant with respect to G.

Apart from the principle of spatial homogeneity of the Universe, we usually
assume the principle of isotropy of space, which asserts that no direction is
singled out in the Universe. This principle is well confirmed by observations,
in particular by the isotropy of microwave cosmic radiation. This radiation
fills the whole Universe, and its spectrum is that of the black body radiation
at a temperature of 2.7 K.

The mathematical expression of the principle of isotropy of space is the
action in spacetime of a Lie group G, such that the subgroup of isotropy G,
of any event p (i.e. the subgroup preserving p) contains an effectively acting
group of rotations in three dimensions SO (3). Just as in the case of the prin-
ciple of homogeneity of space, all the geometric quantities describing the be-
haviour of matter should be invariant with respect to G. The invariance of the
metric tensor with respect to G leads to the statement that it should have the
Robertson—-Walker form

dx?+dy? +dz?

2
e

ds? = ¢?dt?—d*(¢)

where ¢ = 0, +1. The coordinate ¢ is called cosmic time. The function a{?)




:
i

s

157

is called the scale factor. If & = 0, the hypersurfaces of constant cosmic time
have the metric of a flat space. If ¢ = 1, these hypersurfaces can be realized
as three-dimensional spheres immersed in four-dimensional Euclidean space.
If ¢ = —1, the above spatial metric is that of the three-dimensional hyper-
boloids immersed in the Minkowski space. We thus speak of a flat, a spherical
and a hyperbolic world, respectively.

The principle of isotropy of space contains the principle of its homo-
geneity. In isotropic cosmology, the energy-momentum tensor must have the
form of the energy-momentum tensor of the perfect fluid

TY = (c*o+p)u's’ —pgH,
where (') = (1,0, 0, 0), while the mass density ¢ and the pressure p are
functions of the cosmic time ¢. The world-lines of matter are geodesics per-
pendicular to spacelike hypersurfaces (to the orbits of the group G), while
the proper time of matter coincides with the cosmic time 7.

When applied to the Robertson-Walker metric tensor, the Einstein equa-
tions take the form of the Friedmann equations

a?+ ec?

8rko = 3 —7—,
8k a  a*4ec?
o Sl S S

c a a

where the dot denotes differentiation with respect to £

Multiplying the second of these equations by 3 and adding it to the first
one, we obtain

8rk a
o (e+3p) = ~6 —

Since only those solutions of the Friedmann equations for which ¢ > 0 and
P > 0 are of physical significance, it follows from the above equation that
@ < 0, and thus the function a(t) is convex. Therefore, this function must
vanish at one moment of time, at least. At that moment, ¢ becomes infinite.
Thus, for any physically reasonable equation of state ¢ = o(p), the Einstein
theory predicts that isotropic cosmological models should be singular, at
least in the past.

To solve the system of Friedmann equations, we have to assume a certain
equation of state. At the present stage of development of the Universe, the
pressure is low compared with the mass density. Therefore, the assumption
P =0, ie. the treatment of cosmic matter as dust, is reasonable. Then, the
Friedmann equations have a first integral of mass conservation

3
3 pasy T e
oa const y M,
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. . o 4
where M is the mass contained in a “sphere” of volume 5 ra®. The Friedmann

equations now become

This equation has the form of the Newtonian law of energy conservation
and is also valid in Newtonian cosmology, although it involves a different
interpretation of the right-hand side from that in the relativity theory. It
implies the expansion of the Universe in keeping with the Hubble law. De-
pending on &, the solutions of this equation are:

(He= +1:

Mk

ct = o (n—sinn),

a= %ﬁ (1—cosn).

= (& aaefses

Mk | .
ct = —c~2"~c~ (sinh®—n),

Mk (coshn—1).

a =
C2

The dependence a(¢) is displayed in Fig. 18.1. Each of the three functions

a‘

Present
moment




159

vanished at least at one moment ¢, therefore we are dealing here with singular
models. It has been believed for some time that it is possible to avoid singular-
ities in more real cosmological models, taking into account local inhomo-
geneities and deviations from istropy. Exact studies, however, have shown that
the existence of a singularity is a genaral property of solutions of the Einstein
equations.

In the language of mathematics, the occurrence of singularities becomes
manifest in the essential incompleteness of space time. A differential manifold
with a linear connection is called geodesically complete, if each interval of
any geodesic can be extended for arbitrarily large values of the affine parameter,
Le. if the geodesics have no beginning or end. It is easy to form an incomplete
manifold by removing from a complete manifold, such as the Minkowski
space, a certain closed set (e.g., a point). This incompleteness is unimportant,
since we can remove it by returning the missing points. Singularities occurring
in cosmology are essential, meaning roughly that models of the Universe have
“holes” which cannot be filled.

In fact, in the Friedmann models discussed here, the lines x, y, z = const.
are geodesics determined for positive values of the affine parameter . The
metric and other physical parameters are also determined for ¢ > 0; we cannot
extend them smoothly to nonpositive moments of time, since the density of
matter and the curvature scalar tend to infinity for + - +0. Because of this,
the initial period of very fast expansion of the Universe is called the Big Bang.
The occurrence of a singularity means that within the classical Einstein theory
of gravitation we cannot describe the very beginning of the explosion, or
say what preceeded it.

Restrictions of the range of applicability occur in all known physical theories,
and therefore we should not be surprised that the Einstein theory fails for very
large densities and temperatures accompanying the early period of the Big
Bang. The view is quite common that in describing correctly the initial—
or rather “hot”—development stage of the Universe, we have to take into
account quantum phenomena, in particular the quantum foundation of gravi-
tation itself. It is supposed, however, that gravitational quantum phenomena
—such as the creation of a pair of particles by gravitons—become mani-
fest only for energies and curvatures corresponding to the Planck length
(see Chapter 17), i.e. for moments of time comparable to

VEkh|c = 5.4x10™%4
and densities of matter of the order of

c’[hk? = 5.1 x 10°%gjcm3,
There are no reasons to suppose that the Einstein theory and other physical
theories now known may be applied over such a wide range of energy and
density. In other words, going back in time towards the Big Bang and the
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theoretical singularity, we are likely to come across new physical phenomena,
which will undermine the significance of the Friedmann cosmological models,
before we reach densities of the order of 10°3 gfcm3, characteristic of the
creation of pairs by gravitons [62]. One of such phenomena—the effect of
particle spin on geometry—was predicted by the Einstein-Cartan theory,
described briefly in the next chapter. It turns out that within the Einstein-Car-
tan theory it is possible to build cosmological models without singularities
[32]. According to these models, the density of matter at the moment of the
greatest contraction of the Universe is of the order of (M—the proton mass)
M?c*[kh? ~ 10%5g/cm?,

and, although it is high, it is much smaller than the characteristic density for
gravitational quantum phenomena [55].

The superiority of the Einstein-Cartan theory over the other attempts of
modification of general relativity consists, to our minds, in among other things,
the fact that this theory was not constructed ad hoc, in order to eliminate the
singularity. The nonsingular cosmological model with spin was found half
a century after Cartan [6] had proposed his modification of the Einstein
theory.

Incidentally, in considering the singularity, it is worthwhile to think about
the evolution of a spherical closed model of the Universe. Taking literally—
and formally—the equation of evolution of this model, we can represent the
development of the Universe as a full cycloid (Fig. 18.2), corresponding to the

a

Fig. 18.2

recognition of the cyclic, periodical character of the history of the Universe.
Because of singularities, we cannot justify the cyclic model within the Einstein
theory; it takes on significance, however, in theories which smoothed out
singularities, where the cycloid is replaced by another periodical function with
spositive minima.
It is interesting to consider the question of whether the Universe is closed
(¢ = 1) or open (¢ = 0 or ¢ = —1). We can answer the question by measur-
ing the Hubble constant
a 1
A=7=7

and the current matter density o. The Universe is closed if o exceeds the
critical density
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Equivalently, the Universe is closed, if the deceleration parameter
aa 1 ¢
1@ T2

is greater than 4.

We can determine the three parameters ¢, H (or g.and ¢ independently.
The knowledge of their present-day values is unsatisfactory. The best known
is the present-day value of H, of the Hubble “constant” H(¢). Its inverse,
the Hubble time, is, according to observation data, 1/H, = (18+2)x 10°
years. We should bear in mind, on the other hand, that this values has re-
peatedly been reduced, and so we cannot take the present value as final,
either. This value of H, corresponds to the critical density 9., ~ 5%
x 10739 g/cm3. The present-day value g, of the density ¢ is little known,
since it is difficult to take into account all the factors which affect it. The
interval p, = 2 + 6x1073! g/cm?® is taken as most likely. This would argue
for the fact that the Universe is open. Calculations analyzing the dynamics
of galaxies give, on the other hand, larger values of the mean density than
simple estimation of their visible masses does. We call this the problem of
missing mass. The greatest discrepancies occur for the present-day value g,
of the deceleration parameter ¢. Estimations of g, indicate that 2g,0.0 is
greater than the given value go, which is probably related to the problem of
missing mass. Due to cosmic neutrinos, the value g, could be greater, if it
turned out that neutrinos had mass. This would lead to the “closing” of the
Universe.

In the above considerations, we neglected the cosmological term frequently
introduced in the Einstein equations. The Einstein equations with the cosmo-
logical constant /1 have the form

Rij'“'% Rgi;+Ag; = ’8::Tk T;.

These equations have many properties in common with the proper Einstein
equations. Above all, the generalized conservation law of energy momentum
V;T% = 0 results from them. The basic difference is that if /4 s 0, the flat
spacetime is not a solution of the vacuum equations. These equatins agree,
with observations provided that A is sufficiently small. It is only then that the
new term plays an essential role in cosmology; this remark gives it its name.
The introduction of the cosmological term gives a much broader class of
cosmological models. In theories with the cosmological constant, the observ-
able parameters g,, H, and g, are independent, while the knowledge of them
determines uniquely the model of the Universe.




CHAPTER 19

The Einstein-Cartan Theory

A few years after the general relativity theory had been proposed, Cartan
[4, 6] suggested a certain modification of it, called today the Einstein-Cartan
theory, consisting in rejecting the assumption of the symmetry of the linear
connection. According to Cartan, the antisymmetric part of the connection
should be related by algebraic equations with the spin tensor of physical fields
generating gravitation.

We can give the following heuristic arguments for the Einstein-Cartan
theory. In a description of elementary particles based on the special relativity
theory, the principal role is played by the invariants of the Lie algebra of the
Poincaré group, related to translations (mass) and rotations (spin). The in-
variance of the theory under translations ensures that the energy-momentum
conservation law holds, just as the invariance of the theory under the Lorentz
transformation ensures that the conservation law of angular momentum is
satisfied. In the Einstein theory, mass is the cause of the curvature of space-
time, whereas spin has no direct influence on the geometry. Perhaps, this si-
tuation makes it difficult to understand the relation between the physics of
elementary particles and the theory of gravitation. In the Einstein-Cartan
theory, spin is the cause of the torsion of spacetime.

From the geometric point of view, the curvature is related to Lorentz
transformations, whereas the torsion is connected with translations. To see
this, let us consider the field of the radius vector r* determined on the curve
x'(t). It is defined by the formula

If the curve x'(¢) is closed, the radius vector increases after completing a full
cycle

Art (Rijkz”‘“Qikl)ATM,
where Az* is an oriented surface element spanned by this curve.

In the Einstein—Cartan theory, the connection is nonsymmetric, but it
satisfies the metric condition

Vign = 0.
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The gravitational field equations, resulting from the appropriate variational
principle, have the form
8nk

c4

Tija

1
Rij“i Rgi; = -

QF+ 0504y — 5’j(Qlil = —8‘;;‘6“ S0

where Tj; denotes the asymmetric, so-called canonical, energy-momentum
tensor. The second equation is a linear, reversible relation between spin and
torsion. In the region of spacetime where spin vanishes, so does torsion, and
the equations of the Einstein—Cartan theory turn into those of the Einstein
theory [25, 54].

In the Einstein—-Cartan theory, we can construct nonsingular cosmological
models. In the simplest of these models [32], the metric is a plane Robertson—
Walker metric

ds? = 2dr?—a?(1)(dx? +dy? +dz?).

The energy-momentum tensor has the dust form T; = couu;, (W)
= (1,0, 0, 0). The spin tensor has the form S} = u*S;;, where Sy, = — S5
is the only nonvanishing component of the tensor S;;. The nonvanishing
component of the spin S, singles out a certain direction in spacetime, there-
fore, although this model satisfies the principle of homogeneity of space, it
is not an isotropic model. The spin obeys the conservation law

4
Si2 w;— a®* = § = const,

where S denotes the amount of spin contained in a sphere with a radius a.
The scale factor a then satisfies the equation
Mk 3S%*

& -

1
25 7 a T 2cta*
In this equation, apart from the Newtonian term, we have an additional
term playing the role of a “repulsive potential”. This term occurs due to ordered
spins. The solution of the above equation is

38%k
2Mc*

a= }/9 Mkt +

We can see that a does not vanish anywhere, therefore this cosmological
model is nonsingular (Fig. 19.1). We obtain

3 [35%
Gmin = 2Mc*




Fig. 19.1

as the minimum value of a. Substituting in this formula M = m x 108°, where
m is the mass of a nucleon and 10%° is the number of nucleons in the part of
the Universe accessible to observations and assuming the maximum ordering

. 1
of spins, § = 5 7 x 108°, we obtain the upper limit of gy, dnin = 1 cm [55].

We should point out that this short radius of the Universe is decreased further
if we consider anisotropic metrics. Requiring that the metric should be nonsin-
gular, we obtain a very strong restriction on the relative anisotropy of the
Hubble constant,

AH
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