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FOREWORD

The notes contained in this volume are based on the 1964
Brandeis summer lectures of three specialists in relativity
theory. To a greater extent than is common in summer school
proceedings, the different contributions fit together to make
a coherent volume. Various cross-references will be found
in the notes.

Professor Trautman and Professor Bondi have not had an
opportunity to proofread the final version of their lecture
notes. We are grateful to all three lecturers for their
assistance with the initial preparation of the notes. Es~
pecially we wish to acknowledge the valuable help of Profes-
sor Pirani who contributed to all phases of the editorial
work during his stay at Brandeis in the fall of 1964, Edi-
torial assistance was also provided by Miss Christine Denny.

The final copy for this volume was prepared at Brandeis
with non-professional assistance. Prentice-Hall is not to be
held accountable for the quality of the equations and
figures. On the contrary, their editor James Walsh 1s to
be commended for agreeing to publish this volume with speed
and at moderate cost.

The 1964 Brandeis Summer Institute in Theoretical Phy -
sics was made possible by the generous support of the
National Science Foundation and of NATO.

This is the first of two volumes of notes based on the
1964 Institute. The contents of Volume 2 will be found on
the next page.

Stanley Deser
Kenneth W. Ford
Editors
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1. GENERAL DISCUSSION

1.1. INTRODUCTION

One of the many unsolved problems connected with the
general theory of relativity is whether the theory belongs
to physics or rather to mathematics. One of my colleagues
at this Summer School said that those who work in the theory
of relativity do so because of its mathematical beauty rather
than because they want to make predictions which could be
checked against experiment. I think there is some truth in
this statement, and probably I am no exception to it.

Before I indulge in my favorite formalism I should like
to give you a simple-minded analysis of the orders of magni-
tude of possible relativistic and gquantum-mechanical effects
of gravitation.

I shall pretend that we don't know anything about
general relativity and shall try to discover, by approximate
analysis and using rough arguments, what can be said about
the magnitude of the corrections to Newtonian gravitation
theory necessitated by relativity and quantum theory.

We shall assume the following:

(1) Newton's law of gravitational attraction.

(2) That in any given gravitational field, when non-
gravitational forces may be neglected, the motion of
a body depends only on its initial position and velo-
city and is independent of the constitution of the body.

(3) In the absence of gravitation the theory of special
relativity is wvalid.

1.2. GRAVITATIONAL AND INERTIAL MASSES

Assumption 1 above implies that the gravitational force
acting on a body is expressible in terms of a scalar poten-
tial ¢ given by
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A
-> ui
$(xX) = - by e s (1.1)
bodies ]x—xif

where 1
vector of the ith body, ang uiA

is an index labeling the bodies, ;i is the position
is a constant associated with

the ith body and called its active gravitational mass. The

gravitational force ¥

terms of a constant mP

dcting on any body is then given in
assoclated with that body and called

its passive gravitational mass by

>
F o= —mP grad

>
To obtain the motion of the body, this value of F

substituted into the equation orf
2 N
mI Q_g = F,

dt

where mI is another constant as

called its inertial mass, and v i
the body. '
At this point one may wish

of the constants uA, mP, mI that

may glve them as follows:

(1) The inertial masses of two b
pared by Jolning thenm by a s
apart so that the Spring is

simultaneously.

bodies are measured, and, si
of Motion the Spring exerts

b (1.2)
is to be

motion
(1.3)

soclated with the bedy and
8 the position vector of

for operational definitions

we have introduced. We

5

odies, 1 and 2, are com-
tandard spring, pulling them
taut , ang releasing them

The accelerations ?1 and F2 of both

nce by Newton's Third Law
equal and opposite forces

on both bodies, we have from (1.3)

In this Wway any body can be
body ‘defined as having unit
tency of this definition (i.
and 2, and then 2 ang 3, we
if we compared. 1 and 3 direc
that substantiates Newton's

compared with a standard
inertial mass. The consis—
€. if we compare bodies 1
get the same mass ratio as
tly) is an empirical fact
Third Law.
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A. Trautman Chapter 1

(2) If, by means of suitable shielding, all noén-gravitational
forces are removed, then the motion of a body in the
gravitational field of a given mass distribution is
given, from Assumption 2, by

m ——g = mPg, (1.4)

where é(;,t) is the gravitational vector field. The
constants mP and the field é are determined by the
experiment only up to transformations
P
P m + >
m -, g > oag, o= const.
Moreover, from Assumption 2 above it follows that the

ratio mI/mP is the same for all bodies. This fact is
sald to have been noticed and verified by Galileo.

Eﬁtvég‘and more recently Dicke2 have checked it with an

accuracy of at least one part in 1010. By an appropri-
ate choice of a, this ratio can always be made unity,
so that we can take

mp = mp = m, say,

for all bodies.

(3) Newton's law ¢f attraction tells us that the gravitation-
al field g derives from a potential ¢ given by (1.1).
By choosing mI = mP we fix E and, therefore, the con-
stants u appearing in ¢.

Now consider two bodies moving in each other's gravita-
tional field. Then the forces acting on the two bodies are:

5 = F T T (1.5)

1. R. V. Edtvds , D. Pekar, and E. Fekete, Ann. der Physik 68,
11 (1922). ’_

2."R. H. Dicke, P.G. Roll, and R. Krotkov, Ann. Phys. (N.Y.)
26, bhz (1964,
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where ﬁi is the force on the i-th body and B is the position

vector of body 1 relative to body 2. By Newton's Thilrd Law
of Motion these forces are equal in magnitude and opposite

in direction, ﬁl = ~ﬁ2, so that (1.5) gives

The ratio uA/m is thus independent of the body and is a uni-
versal constant, k say, called the Newtonian constant of
gravitation. We thus have

uA=km

and so have reduced the three masses originally defined to
only one independent one, simply called the mass m of the
body.

1.3.. FIRST ORDER CORRECTIONS TO PARTICLE MOTION

Let us now consider possible first order corrections
to the Newtonian equations of particle motion in the gravi-
tational field of a single massive body that might be given
by a relativistic theory of gravitation. We shall try to
find a Lagrangian that will include such effects. This does
not necessarily mean that the exact relativistic theory must
be expressible in Lagrangian form, however, since it is often
possible to describe small correctlons to a theory approxi-
mately by means of an equivalent Lagrangian even when the
exact corrections cannot be so expressed.

We shall assume that the body producing the field can
be described with sufficient accuracy for our purposes by
giving its mass M, velocity V: angular momentum and charge
Q. Out of these, the universal constants k (gravitational
constant) and ¢ (velocity of light), and the position vector

7 of the particle, relative to the body producing the field,
one can formthe dimenslonless quantities

¥ k3 KQ°

5 T3 T35

cr cTr cr
10
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Now using the fact that a Lagrangian must have the dimensions
of energy, we can hypothesize that the particle can be des-
cribed to first order relativistic corrections by a Lagran-
gian L of form

4 2 2
L . 1.2, kM 1v kM KM v
m - 3V tytgost oL(cr') teET st
e c
(1.6)
N > > - 2
+Y___k1§\7’,%_€_+6kgx§_%%+ekg+
cr cr c“r

where m is the mass of the particle, Vo= d?/dt, and a, B, ¥,
§, €, are dimensionless constants. Of these terms, the first
is the Newtonian kinetic energy of the particle, the second
gives the Newtonian gravitational field, and the third is the
first order correction for the increase of mass with velocity,
obtained by expanding the Lagrangian

for a free particle in special‘relativity. The term contain-
ing the angular  momentum has to have the form of a triple
scalar product, since angular momentum is an axial vector
and has to be combined with other quantities in such a way
as to give a scala;_term rather than a pseudoscalar one. A

1
term of the form c—%g could have been added, as it would
have had the correct dimensions, but unless the coefficient
¢ were exceedingly small, 1t would violate the equality of
inertial and active gravitational mass. For an electron

)

21

ke

"Slg

and so for any reasonable coefficient ¢ the gravitational

field due toits charge vkQ/r would be far larger than that
due to its mass, kM/r. On the grounds that such extremely
small dimensionless coefficients do not occur in reasonable
physical theories, we shall not include such a term.

Of the correction terms we have hypothesized, the only
ones for which there are any observational evidence are
those occurring in the filrst row of (1.6). Observations
of the 'precession of the perihelion of planetary orbits,

11




A. Trautman Chapter 1

after taking into account all the perturbations due to the
other planets, indicate a small residual precession.which can
be explained by taking o % 0. All the other correction terms
give effects so slight, for values of the coefficients of the
order of unity, that they would have no observable effects

on planetary orbits. The term (kM/cr)2 will become appreci-
able compared with the Newtonian term kM/r if

e r
On an ‘atomic scale, we have, for example

2
km _ km -
B B
cr e

42

on. the surface of an electron, taking for r the classical

radius of the electron, r = e2/m02. So clearly it is not on

the atomic scale we must look. We must take M as large as
possible: and r as small as possible for that M. Expressing
M in terms of the density p, for a sphere of radius r, we

have M =(U/3)npr3, and then

So alternatively we can say that we want the largest possible
size for a given density. This suggests that we look to as-
trophysics. Such a term would play an appreciable part in
the hypothesized neutron stars. Alternatively we can look on
an even larger scale, to cosmology. A typical length scale
for cosmology can be taken to be

r = cT

where 1/T is Hubble's constant, and T ~ 1010 years. Then
we have

kpr2

2
c

nokpT? a1

on substituting in numerical estimates for p, which here can

12




A. Trautman Chapter 1

be taken as the mean density of matter in the universe.
So we expect relativistic gravitational effects to play an
important part in cosmology.

If we evaluate the effect of the other corrections in
(1.6) on the motion of the planets, we find that some of
those additional terms give rise to a precession of the
perihelion | and the term with coefficient & causes a
precession of the plane of motion with an angular velocity

>
of precession proportional to J/r3. However, as mentioned
above, none of these terms, apart from the one with coef-
ficlent a, would cause an observable effect if they occurred
with coefficients of the order of unity.

1.4, GRAVITATIONAL RADIATION

In a similar way, using rough arguments, we shall now
discuss the magnitude of effects connected with gravitational
radiation.

In Newtonian theory the gravitational potential ¢
satisfies Polsson's equation

o = lnkp, (1.7)

where p is the mass density. We do not want to use any
particular relativistic theory of gravitation but we can
expect that if there are field equations for the gravita-
tional field in a relativistic theory, some of the components
of the field will satisfy either the natural relativistic
generalization of (1.7), namely

O¢ = lhvko, (1.8)

where ndef V2 - 32/3t2 is the D'Alembertian operator,

or else some similar equation. A solution of (1.8) is
given by the retarded potential

> R
5 p(r, t-g)
$(R,t) = -k | ——p——adv (1.9)
where & = ﬁo—?, R = |E|, T 1s the variable of integra-

tion, and the integral is over the 3-space t = const. The
general solution of (1.8) consists of a mixture of advanced

13
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and retarded potentials plus any solution of the free field
equations

but on physical grounds we reject the advanced potentigl
solution and we are not interested in the free field part of
the solution. So we shall only consider the solutions given
by (1.9).

Consider the field in the wave zone, l.e. at distances
from the source, (assumed to be of finite extent), which are
large compared with the dimensions of the system and also
compared with the wavelength of the radiation. Let 7 be a

bnu'v\da‘fﬁ o} Sovfcej \

), dwit veckor

~

unit vector in the direction of B and choose an origin of

O’
coordinates inside the Source. Then we see from the diagram
that at large R,

R~R - -7 (1.10)
We thus have
> R > o} 5-?
e(r, t-g) = p(r, t—g* + “E—)

> R _>-+ o >
o(r’,t—-c—)=o(r,t~59)+§~?— p(r, t - -2
(1.11)

where " denotes differentiation Wwith respect to t. Substi-
tute this expansion into (1.9), remembering that it is valid

14
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in the wave-zone for all r inside the source, and that Lthe
integrand of (1.9) and all terms in (1.11) vanish for 7
outside the source. So we get

R R > >
Mﬁo’t) ”—-—-—jp(r, t~€9) dV“‘jD(I’, - -9 %r_dv
(1.12)

R 2

k > o] H-?
- ﬁ; j—ﬁ(r, t - E—) (“3*9 av -

where we have, with little error, replaced R by RO in the

denominator of the integrand of (1.9). This is the multipole
expanslon of the potential in the wave zone that is familiar
from electrodynamics. The terms are successively called the
monopole, dipole, quadrupole, ... terms.

We now invoke the laws of conservation of mass and
momentum to show that, in the absence of an external non-
gravitational field causing the momentum of the matter to
change, there can be no monopole or dlpole radiation. For
if M,is the total mass of the source, P its total momentum,
and v the veloclity field of the matter, then

R
fo?, v - 22 av = w,

and from the conservation equation

Oe

+ div (pz)

we have

#

@ >
v{o r dV

>
jdiv (pV) T av

N surface integral which
= J; vV 4av + vanlishes as ¢ = 0 on the
boundary of volume of in-
tegration.
>
= P.

The contributions to ¢ from the monopole and dipole terms
are thus :

15
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>
¢(§O,t) = - %ﬂ - kcg'ﬁ + quadrupole and higher teprms, (1.13)

e} o}

But by analogy with electromagnetic theory we expect the
radiated power P to be given by an expression of the form
of a surface integral of a quantity quadratic in the first
derivatives of the field variables, e.g.

P = 1% §S (v)? as, (1.14)

where S 1is a surface at large distance from the source,
and c/k is a factor necessary to give P the correct dimen-
sions. Consequently, the only terms in ¢ that will contri-
bute are those for which v¢ =»®?1/R), and from (1.13), by
the constancy of M and s for the monopole and dipole terms

Vo = o(l/Rz). Thus we expect gravitational radiation to be
predominantly quadrupole. We notice here the analogy with
electromagnetism, where monopole radiation does not occur
because of charge conservation, and dipole radiation does not
occur for a system composed of charges all with the same ratio
of e/m. :

We shall now use (1.12) and the expression (1.14) for
the radiated power to estimate the intensity of gravitational
radiation from a system of two equal masses moving about one
another in circular orbits. Let r be the radius of the orbits,
m the mass of the bodies and w the angular velocity of the
bodies in the orbit. Then Newtonian mechanics glves us

S = mwgr. (1.15)

The quadrupole contribution to the potential in the wave
zone will then be

6 k mu)2r'2
R 2
o c
«s0 that
3.2
Vo A kmw g
R ec
o)

16
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Putting this into (1.14) gives

2
3.2
P g(@%}:—) (1.16)
c
or, using (1.15),
P 10_0_2_ km 4 (/1 17)
T\ 2

Let us compare this with the analogous electromagnetic
case, of two bodies of equal mass m and opposite charges e
and -e moving in circular orbitsof radius r about one another
with a velocity much less than c, so that we can use a non-
relativistic approximation. Then the Newtonian equation of
motion (1.15) is now replaced by

e2 2
— = M T, (1.18)

Mr2
as gravitational forces are assumed negligible compared with

the electrostatic Coulomb force. The power radiated by
electromagnetic (dipole) radiation is

mec r

ne? [ &° ¥
Peom. ™ 7f7<'*7f—) (1.19)

and by substituting (1.18) into (1.16) we get the power radi-
ated by the same system as gravitational (quadrupole) radia-

tion to be
3
2 2
me e km
Pgrav v 7f7< *“§"> { _5—)' (1.20)

me r cr

For motion of particles on an atomic scale, the additional
factor in (1.20) compared with (1.19) is

—— 10'47

2

17
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and so we see that gravitational radiation from atoms must be
very small indeed. On an astronomical scale, too, the effect
of gravitational radiation is negligible. For example, the
gravitational radlation for the Jupiter-Sun system, calcula-
ted by a formula similar to (1.17) but for two unequal masses,
is about 450 watts, a negligible quantity compared with the
total energy of the system.

It may be possible to obtain larger effects from gravi-
tational radiation 1f external forces are present which des-
troy the conservation of mechanical momentum: for example, a
charged particle moving in a magnetic field. This is not cep-
taln, however, since we know that if we take into account
the momentum of the external field, total momentum is con-
served. This momentum is not localized; it is distributed
throughout space, but so 1s the energy of the field, which
acts as a source of the gravitational field. In this case
the multipole expansion mode above is not valid, and the
situation becomes much more complicated. A discussion of

this case has been given by Postovoit and Gercenstein.3 If
we neglect these complicating factors we can estimate the
expected amount of gravitational dipole radiation, if any
occurs at all, from a particle of mass m and charge e moving
in a circular orbit of radius r in a uniform magnetic field
of strength H. Using our multipole expansion in exactly the
same way as before, we have the equation of motion

Hev _ 2
5 = mer,

and we obtain for the power of the gravitational and electro-
magnetic dipole radiation respectively

2 4
P . TC v km
grav r c 2

2 4 2
P L e v e
e.m. r c 2
5‘ me r

in the non-relativistic limit wv<<c, where v is the velocity
of the particle. Again we see that on an atomic scale the
gravitational radiation is negligible when compared with the
electromagnetic radiation, e.g. for an electron,

3. V.I. Postovoit and M.E. Gercenstein, J.E.T.P. 42, 163
(1962). (In Russian.)

18
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P K
Pgrav  km® , o-42,

e.m. e

1.5. QUANTUM EFFECTS CONNECTED WITH GRAVITATION

We shall next discuss some of the quantum effects con-
nected with gravitation. But before doing so we give a table
of typical lengths which will be useful in discussing orders
of magnitude (see p.20. Hzre k 1s the gravitational constant,
m the mass of the electron, e the electronic charge, o= h/20
where h is Planck's constant, and ¢ is the velocity of light.
The coupling constant f occurs in the interaction Lagranglan

of weak interactions through its sgquare (fzﬁwﬁw).

It is interesting to note that the classical radius of
the electron, which is a characteristic length of atomic
dimensions, i1s roughly the geometric mean of the gravitational
radius of the electron, which characterizes the distances at
which gravitational effects become important in elementary
particle physics, and the radius of the Universe, which
characterizes cosmology and is also connected with gravita-
tional phenomena.

The ratio

o (%)
g=

=

characterizes the magnitude of gravitational forces compared
with electromagnetic forces on an atomic scale, and we saw
it occur in this context in the previous section. The ratio

Or\)l§

v 0.25 x 10712

[¢]
[\

3

2 c3 -23

x = TR ~ 1.7 x 10
(5)

characterizes for an electron the gquantum mechanical effects

due to gravitational forces. Of course, instead of consider-
ing an electron we can replace m and e by the mass and charge
of any other particle to get the corresponding values for the
particle, but for all elementary particles these numbers will

19
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A. Trautman Chapter 1

have the same order of magnitude.
Let us now compare the hydrogen atom with a gravitation-
ally bound atom consisting of two neutrons in a bound orbit,

and calculate for both the ground state energy Eground and

25 round? using .

the old Bohr quantization principles. Then we get

the radius of the orbit in the ground state,

For the hydrogen atom. For the gravitational atom.
_ 1 2 2 _ 1 2 ok -T77
Eground = -3 mca ~13.6 eV Eground = -3 Me (A) 210 eV
where a = eg/hc = 1/137 is where M is the neutron mass
the fine structure constant and A = h/Mc.

and m 1s the electron mass.

2 )
e 1 kM A 28
a = —= —= 0.5 x 10  "em & = == (=) ~10 cm.
ground m02 a2 ground c2 )
Yi',ié& ‘Ui/\: 6",
We notice the odd coincidence that the ground state of the
Unavesse

gravitational atom has a radius of the order of the radius 3 2

of the universe! ~ p\/fg
Nonrelativistic quantum effects of gravitation may be

expected to play a significant rSle for a system for which

A 2
8yround K)o~ A

and where classical dimensions are not much larger than
this. But A=2 corresponds to a system of mass

M~ 1.5 x 1023 electron masses.

This could only be realized macroscopically, in which case,
however, quantum mechanics would play no r8le. Consequently
one can doubt whether the gravitational potential can be mean-
ingfully introduced into the nonrelativistic Schrddinger
equation.

The question arises as to whether there are significant
relativistic quantum effects of gravitation and whether the
gravitational field may be "quantized” by a procedure simllar
to that applied in electrodynamics. It should not be taken
for- granted that this is so.  For example, we know that in a
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certain sense statistical mechaniecs can be derived from the
laws governing elementary systems, and that this can be done
on both the classical and the quantum level. For simple
mechanical systems the quantum description may be obtained
from the classical one by a well-defined quantization pro-
cedure. The relations between the classical and quantum
theories of microscopic and macroscopic systems can be sum-—
marized in the diagram:

Classical mechanics — Classical statistical mechanics

}

Quantum mechaniecs —) Quantum statistiecal mechanics

But it would be rather foolish to try to quantize classical
statistical mechanics to obtain quantum statistical mechanics;
that is, to take temperature, pressure and volume and repre~
sent these quantities by operators. It may be argued that
when we try to quantize the gravitational field, we are doing
something analogous to "quantizing" elassical statistical
mechanics. Some people advance this as an argument against
quantizing general relativity. I prefer not to take sides in
this dispute. Instead, I shall Suppose that the gravitational
field may somehow be quantized and will try to estimate when
the quantum effects are noticeable. Again, the arguments will
be rough and based on analogies with electrodynamics.

Let ¢ be the function describing the matter that is the
source of the gravitational field, and let ¢ be a function
describing the gravitational field. v and ¢ need not neces-
sarily be scalar functions. Then one can expect that the
combined matter and gravitation can be described by an actual
integral of the symbolic form

TTL%E j(vq;)g dx + ﬁlﬁc’- f(bpdx + ?Ti— f(vq;)2 dx,

where dx denotes an element of volume in g 4~dimensional

Space~time manifold. The coefficients involving h, k, and

¢ have been introduced so as to make the action dimensionless.

The first and last terms deseribe respectively the free gravi-

tational and matter fields, while the second term describes

the interaction, o being some bilinear function of ¥ and/or

V¢ that in some sense can be interpreted as the density of

matter. i
Write

22




v_____-----IIlllllIII......lII.lllllllllllllllllllllllll

A. Trautman Chapter 1

def/ ¢
@ == -
KCZ

where 2 = th/c3 is the characteristic length defined above,
and then choose units in which numerically h =1 and ¢ = 1.
The action integral then takes the form

5}(v¢)2 + Umepd + (vw)g} ax.

This has the typical form of an action integral for interact-
ing fields in quantum field theory, with 4ng playing the role
of a coupling constant with the dimensions of length.

The dimension of the coupling constant is an important
quantity characteristic of any theory of interacting gquantized
fields, as the renormalizability properties of the theory
depend on it in an essential way.

Suppose one wishes to apply the standard perturbation
method of calculating transition amplitudes. The n th
order term of the S-matrix is, symbolically,

S(n) ~ (unil)n5-~ ---»jT(pl-¢l‘p2®2. . .pnén)dx‘. codx .

This is proportional to ln, and so one can expect that the
corresponding contribution to a transition amplitude will be

n
Syl 17w (1.21)

where <f| and ii> are state vectors of the final and initial
states respectively, and ) is a wavelength characteristic
of the process under consideration. The amplitude (1.21)
is significant only for very small i, A ~g. This means that
quantum gravitational effects may be expected to De signifi-
cant only at very high energies. .

As an example, consider the transition probabilities
for the annihilation of an electron-positron pair into

(1) two photons
(ii) two gravitons.

The cross section o for reaction (i) is given by

2\ 108 (:“E‘“z)
o~ | L) \Emc for E>>m,

5
mc

m02
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and according to the calculations of Vladimirov,a based on a
quantized version of the linearized Einstein theory, that for
reaction (11) is given by

2 2
o~ (EQ) (_E_) for Es>>m.
c 2
me

S0 we see that the latter process might become slgnificant
only at extremely high energies.
As a last comment T should 1like to say that one should

But nevertheless, gravitation plays an important role in
geophysics and in our life! Gravitation plays an important
part in astronomy and cosmology because to g very high accur-
acy large bodies are electrically neutral.

4o J.s. Vladimirov, Proceedings on the Theory of Gravitation,
Gauthier-Villars, Paris, and PWN, Warsaw (19657,
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2. VECTOR AND TENSOR ALGEBRA

2.1. INTRODUCTION

In this and the following two chapters we shall develop
in outline the portions of vector and tensor algebra and dif-
ferential geometry that will be useful in our study of general
relativity later in the course. Most of the theory that we
develop here will be familiar to students of general relati-
vity, but not in the form in which we shall obtain it. We
shall be using the notation that is nowadays used by pure
mathematicians in the fields of group theory and differential
geometry, which is sufficiently different from that familiar
to physicists that most physicists would have great difficul-
ty in reading the current mathematical literature on differ-—
ential geometry. Our reason for this approach is three-
fold:

(a) To enable you to become sufficlently familiar with the
language of contemporary differential geometry to be
able to read modern books and articles on the subject
and to understand the connection between the work done
there and that done by physicists working in general
relativity;

(b) To clarify the precise meanings of terms such as tensor,
manifold, Riemannian space, which are used so freely in
physics;,

(¢c) Because it considerably clarifies the role of coordinates
in physics.

In this chapter we shall mainly be concerned with vec-
tor spaces, but we shall begin by considering more general
algebraic structures.

2.2.  ALGEBRAIC STRUCTURES

An algebralc structure is an entity consisting of:

(i) A set E, called the basic set, which is non-
empty.
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(11) A set 2, which may be empty, of operators which
act on E.
(1i1) A number of functions of two variables, called
operations which may be of one or two types:
a Internal operations, which map ExE - E or
QX - Q.

(b) External operations, which map QxE + E
(1v) A set of axioms.

In the above, QxE etc denotes the Cartesian product of the
sets ® and E, i.e. the set consisting of all ordered pairs,
the first member of which lies in o and the second in E.
Elements of E will be denoted by small Latin letters and
elements of @ by small Greek letters. The operations will be
denoted by a symbol placed between the elements on which
they act, e.g. an internal operation on E may be denoted by
T, and we write x = Y T z. We shall denote an algebraic
structure by (ET, QF,L) etc., where the first number in the
bracket denotes the basic set, followed by the internal
operations on it; then the set of operators, followed by the
internal operations on 1t; and finally the external operations.
If the set of operators is empty, we shall omit it.

Three simple algebraic structures are:
Groupoid. This consists of a set E on which an operation
is defined.. There are no 8xioms, and we denote it by (E-).
Semi-group. This is a groupoid (E:) in which the operation-
is assoclative, i.e.

e (y-z) = (x-y)-z.

Group. This is g semi-group (E-) containing a neutral ele-
ment e (called the unit element unless the group operation

is denoted by *, addition, when it is called the zero element),
such that

-

€+X = X-e = x for all xek,

and such that to every x e E there corresponds an inverse
element x_laE such that

-1 -~
S e.

In this section we shall use the following notation:

will always denote an operation obeying the groupoid
axioms, (i.e. no axioms).

T will always denote an operation obeying the group
axioms.
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t + will always denote an operation obeying the group
axioms which is also commutative, i.e. x + y =
y + x.

1 will always denote an external operation.

Furthermore, whenever they are used together in an algebraic
structure in such a way that the following axioms are mean-
ingful, then they will be assumed to obey those axioms.
These axioms are:

rs
? (x + y)z = z + y-z
(1) {X'(y +z) = Xy + X%
be
7 {(u + B)ey = ary + Bry
() a* (B +y) = a8 + aey
e <0L + B)J.X = (Ot.LX> + (B-LX)
ons., (3) al{x +y) = (alx) + (aly)
(W) ellxy) = (alx)'y = x(aly)
(5) al(glx) = (a's)ix or (aTg)Mx

(6) al(xTy) (alx) T (aly)

(7) If ¢ eq is the neutral element of @ with respect
to+ or T, then for every x ¢ E, elx = x.

1t), The set of operators @ is said to be transitive in E

if, for every x, y € E, there exists an o ¢ @ such that

alX = y. A groun q acting in E is said to be effective if

aLX x for all x ¢ E implies that o is the neutral element.
We are now in a position to define easily most of the

algebraic structures that are commonly encountered in physics.

These are given in the accompanying table, in which the arrows

denote the direction of increasing complexity. The axioms

of any of the structures listed can be read off immediately

from the above 1list, e.g. a homogeneous space (E,qT,t) satis-

fies (5) and (7), (@T) is a group acting transitively in E.

An example of a homogeneous space is the affine space

(F, E+,l) assoclated with a vector space (E+, o+.,1 ) and

defined simply by requiring E to act transitively and effec-

tively on the set F. Well-known examples of commutative

fields ag@the real and complex numbers. An example of a non-

commutative field of interest to physicists is the quater-

3 nion field.  This may be considered as consisting of all 2

by 2 matrices of the form

i

a + 1 a, o
k=1 kk?
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where o and 8, are real numbers and the o, are the Pauli spin
matrices.

2.3.  EQUIVALENCE RELATIONS AND MORPHISMS

Let E be a set and ER C ExE be a subset of the Cartesian

product ExE. Then ER is said to define an equivalence rela-
fion 'R on E if it is:

(1) Reflexive, i.e. if x ¢ E then (x,x) ¢ Ep
(11) Symmetric, i.e. if x,y ¢ E and (x,y) e Epn then
(y,x) e Eqo

(111) Transitive, i.e. if x,y,z ¢ B, (x,y) e ER and
(y,z) e Ep, then (x,2) ¢ Ep.

We  then write:

x 2y (mod R), or simply x = y, (read as x congruent
to y) to mean (x,y) e ER'

Given an equivalence relation R on E it can be used to
divide E into a set of disjoint subsets called equivalence
classes whose union is the whole of E. F C E is called an
equivalence class of R if

(1) x,y € F implies x = y (mod R)
(i1) x e F and x = y (mod R) implies y e F.

It immediately follows that if Fl and F2 are two equivalence
classes of R, then either F1 = F2 or Fl and F2 are disjoint,

i.e. have no common element. The set of all equivalence
classes of R is called the guotient of E by R, written E/R,
and the mapping that associates to each X ¢ B the equivalence
class containing it is called the canonical mapping of R.

Now consider two algebraic structures which have Ethe
same operations and the same set of operators, but different
basic sets, for example (ET, @, 1) and (E'T, 2,1 ). Then a
mapping f of E into E' which preserves the structure of
these algebralc structures is called a homomorphism. In our
example f 1s a homomorphism if

(1)  f(xTy)

f(x) Tf(y) for all xy € E and
(11) flalx)

olf(x) for all o ¢ 2, X € E.

(1IN}

Note that the operations T,l on the left-hand sides of these
equations are acting in (ET, @, L) while on the right-hand
sides they act in (E'T, o, 4).
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A homomorphism of E into itself is called an endomor-
phism of E. A homomorphism f of E into E' satisfying

(1) %,y € E and f(x) = f(y) implies x = y (i.e. f is
one~to-one), and
(i1) 1if x' € B! then there exists an x ¢ E such that
x' = £(x) (i.e. f is onto)

is called an isomorphism. An isomorphism of E onto itself
is called an automorphism.

Now consider an algebraic structure with base sSpace
E and set of operators o which has an equivalence relation
R defined on E. Then if, for every internal operation T
on E and for every external operation 1,

X = x', y =y, and o € Q
imply

xTy 2 x"Ty' and olx = alx?,
R'is said to be compatible with the structure. TIn this case
one can form the quotient structure which has base space E/R,

set of operators 2, and the same operations, the action of
the operations being defined by

(1) s(X)T ¢ly) = 4(xTy) for X,y € E
(11) aL¢(x) = ¢{alx) for x e E, o & Q

where ¢ is the canonical mapping of R. The consistency of
these definitions follows immediately from the compatibility
of R with the structure. In general the quotient structure
will not satisfy the same @xioms as the original structure,
but it does in some cases, as ror example if the original
structure 1s a vector space (c.f. §2.6). We see that the
mapping x > ¢(x) is g homomorphism of E onto E/R.

2.4.  VECTOR SPACES

As defined in Section 2.2, a vector space is an alge-
braic structure (T+, K+-, L) such that (X++) is a commutative
field, usually the real or complex number field, (T+) is an
abelian group, and the axioms (3), (5) and (7) of the 1list
given there are obeyed. Elements of X will now be denoted by
small Latin letters, a, b, ...;these are known as scalars.

The neutral elements of X with respect to + and - are denoted
respectively by 0 snd 1. Elements of T are called Vectors;
they will be denoted by small Latin letters with an arrow
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above them, e.g. a, 3, «+«. . The neutral element of T, with

respect to + will be denoted by 8. For simplicity the opera-
tions - and L will be denoted by juxtaposition, i.e. we

shall write ab instead of a'b, and au instead of ala, where

a,b ¢ K, U e T. With this notation the axioms (3), (5) and
(7) become

(a + )4 = au + bu
> -> - >
a(u + v) = au + av
a(bi) = (ab)d
W = u.
The n vectors Gl, ey ﬁn are saild to be linearly inde-
pendent 1if
n ->
Y. am, = 0,
a=1
where a, ¢ K, implies a, = 0, all o . If this 1s not so,

the vectors are called linearly dependent. The least upper
bound of n taken over all possible sets of n linearly indep-
dent vectors is called the dimension of the vector space.

If a vector space T has dimension n, written

dimT = n,

an ordered set of n linearly independent vectors of T is
called a basis of T . Let {ga},u =1,2,...n be such a basis,
and take any a e T. Then by definition of n, the set

{G, gu} is linearly dependent and hence there exist scalars
u¥ such that

N :
- Y u*é =3
o
o=l
ie. n
> a >
u = }: u e,
a=1
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of basls vectors {ga}, and the scalars y° are called the
components of 4 with respect to the basis {ga}.

Now take another basis {ga,}. Then there exist scalars
AS, such that

.
e = AP, 36, ‘ (2.1)

where we are using the summation convention, that g repeated
index is to be summed over its range of values. (This con-
vention will always be used below, unless the contrary is

explicitly stated.) However, as {ga’} is also a basis,
1
there exist scalars Ag such that

- _ B! >

e, = Al €gr e (2.2)
It follows from (2.1) ang (2.2) that

« gt _ o

Mg AL = 5 (2.3)

where

udef{lifa=8
8 =
8 0if o 4 g

is the Kronecker ¢ symbol.” From (2.3) we see that the matrix

'
(Ag,) is non-singular and its inverse is As - Conversely,
given any basis {ga} and a non-singular matrix Ag,, the

vectors ga, defined by
e = af 2
e

form a basis of T.
N .
Let uu, u% bpe the components of ﬁs“Twith respect to
the bases {gu}, {gu,} respectively. Then
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> (y" >
u = u e
o
(2.b)
13
B
= u Ayi &, by (2.1)
But also
i o= uf g, (2.5)

Comparing (2.4) and (2.5) and remembering the linear Inde-

pendence of the ga’ we get

and similarly , (2.6)

which relates the components of a vector with respect to two
bases related by (2.1).

2.5. THE DUAL SPACE

Consider the vector space (T+, K+-,1 ). A mapping o

of T into K is called a linear form on T if for all ﬁs$€T
and all a,be€k,

w(ald + b¥) = aw(d) + bu(V). (2.7

If & and 7 are linear forms on T, we can define w + m and
aw by

L, def N N
(o + m)(u) = w(u) + w(u) (2.8)

o def R
(aw)(u) = al(w(u)) (2.9)

and these are easily seen to be linear forms on T also. Then
with these definitions we see that linear forms on T form a
vector space over K, called the dual space of T, denoted by
T#,
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It follows from (2.7) that to determine o completely
it is sufficient to give the scalars W, defined by

def

w, o= w<§a>, o =1,2,...n. (2.10)

where {gu}is any basis of T, and conversely, any set of n

scalars W, determine a unique linear form through (2.10),
We can therefore define n linear forms ea, o = 1,2,...n, by

e &) = b (2.11)

and then for any form w and any vector u with components u“
with respect to the basis (ga) we have

e®() = e“(usés) = usea(gg) = u® by (2.7) and (2.11)
(2.12)
and
w(a) = w(uBgB) = qu(gB) = mBuB by (2.7) and (2.10).
(2.13)
Thus w(Q) = o e®(0) for any vector G, and so
[¢3
w = wuea. (2.14)

We then see that the n forms % are linearly independent ang
Span T¥, i.e, every member of T¥ can be eXpressed as a linear

combination of the e%, They therefore form a basis of T#,
called the basis dual to (gal, and we see that

dim T = dim T#,
Let (3a,) be another basis of T related to (ga) by

> - B > > _ o
ea, = Au,es, es = AB ol
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1
and let (e* ) be the basis of T#* dual to (& ,). Then
OL‘

at > - a' vy 2
e (eB) e (A‘3 eY,)
v'oal >
= A6 e (eY,) (2.15)
- ,Y' U-' - (’4'
Ay s A%
But also
1 1
A$ eY(ES) = Ay, (2.16)
and so from (2.15) and (2.16) we get
al a' B
e = A e (2.17)

which shows that the dual basis transforms with the inverse
transformation to the basis of T.

Now since T#¥ is a vector space over K, we can form 1its
dual, T#*, Let elements of T** be denoted by u, etc. and

and let (ga? be the basis of T¥¥* dual to (e®) of T¥. Then
if u € T*¥% and
[¢3

u = u-e
-~ e

we can associate with 1t the vector

def N
i = u“eae T.

We easily see that this correspondence between u € T*¥ and
G e T is independent of the particular basis chosen, and it

is a natural isomorphism of T¥¥ onto T such that if o eT¥,

u(w) = w(d).

Because of this we do not regard T¥¥ as a new vector space
at all, and we can say that the dual space of T¥ is T.

35




A, Trautman Chapter 2

2.6. LINEAR SUBSPACES

and all scalars a, b, au + bV € S. Given any set D of vec-
tors, not necessarily containing a finite number of vectors,
the set G(D) or all vectors of T that can be €Xpressed as g
finite linear combination of vectors of D is g linear sub-
Space of T called the subspace Spanned by D.

Now let S be g linear subspace of T, when T need not
necessarily be finite—dimensional. Then we can define an

g = v if and only irf u - Ve S
and then we write
U = v (mod 8).

We easily verify that this is compatible with the structure
of T as a vector sbace, and then in the manner explained in
§2.3 (Equivalence Relations ang Morphisms) we can construct
the quotient structure T/S+, K+., LY. Further, we easily
verify that the structure satisfies the axioms of a vector
Space. It is called the Quotient space of T by S and is de-
noted shortly by T/S. If ¢ is the canonicgl mapping of the
equivalence relations, then we See that the zero element or

T/S is ¢(§), any U e S.

2.7. TENSOR PRODUCT OF VECTOR SPACES

Let T and U pe two vector spaces over the same field
K.  Form the Cartesian product TxU, i.e., the set of all opr-

dered pairs (?, H), £ ¢ T, and §>e U, and from this construct
the set G(Txy) of all finite formal linear combinations of
elements of TxU, so that the elements of G(TxU) have the form

7 a, (£,0) (2.18)
(E,0) eTx g '
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where the coefficlents are elements of K and the sum contains
only a finite number of terms. G(T x U) is thus an infinite-
dimensional vector space.

Now let D be the set of all elements of 3(T xU ) of the
form

(ail + bV, cw + dAX) - ac (U,H) - ad(3,%)

- be(¥,W) - ba(V,X)

and construct the subspace G(D) of G(T x U) spanned by D.

We may now form the quotient space G(T x y)/G(D). This is
called the tensor product of T and Uy, and is denoted by T &U.
Let ¢ be the canonical mapping of G(T x y) onto T ® U. Then
we write

(T, = teu (2.19)

and we easily see that for any finite sums Z:atg, Z:bua
of vectors of T and U respectively, we have

> -> . > >
( Zat) & Zou) = Zatbt -t ® u. (2.20)
Now let dim T = n, dim U = m, and let (£ ), @ = 1,2,..1,

and (?a), a=1,2,...m be respectively bases of T and U.
The general member of T &y has the form

$(L a, , (E,00), (2.21)
t,u

2

i.e. the image of (2.18) under ¢. £ and u can be written as

and so

But by construction,
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-
L2 20 uou®f,) - la, LMRE LE ) e a(n).

2 a t,u
Hence
o(Xa, (£,0)) = $(La, t%E LF )
t,u t,u
= Zat,_13 t%u® gb(_)a,—f}‘a)

by definition of the quotient structure (Section 2.3). Using
(2.19) we see that this can be written as

and so ga ® ?‘a span T & U, Clearly they are linearly inde-

pendent, and so they form a basis of T ® U, which thus has
dimension mn. Now take any S e T ® U. Then there exists a

unique set of mn scalars %@ such that

s = gea@ Eaa'%a. (2.22)

Make a transformation to new bases (@ N (?a,) of T and U
respectively, and such that @

> - B > > _ al -

€yt = Aoc 1 €4, eB = AB e,
and

- _ b - _ a'

Fgro= B, ?b, Ty = BY F,,.

If S is now expanded in terms of the new basis o & * y of
T &U as @

b4
¥
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then

1 1 i 1
s*' = a%E? sPP, (2.23)

This is the usual definition of a tensor in terms of the
transformation law of its components.

We can form the tensor product of more than two vector
spaces by repeating this process. Thus if U, V, W are vec-
tor spaces over the same field K, we can form (U® V) & W
and U & (V &W). However, just as for the dual of a space T
we saw that T*¥# and T were related by a natural isomorphism
and need not be considered as distinct, there is also a
natural isomorphism between (U @ V) @ W and U ®@(V & W),
and we do not consider these as distinct either. We can
then simply write U ® V @ W, and this is naturally extended
to the product of any number of vector spaces.

Now let T be a vector space and let T¥* be its dual
space. We can then form the repeated tensor product

&°m) @ (@'r*) (2.24)

in which the factor T appears k times and the factor T¥
appears & times. Elements of this vector space are called
tensors of valence (k,%), and are said to be k times contra-

variant and & times covariant. If (ga) is a basis of T and

(e¥) is the dual basis of T¥, then the general element S of
(2.24) can be written as

If we change to a new basis (gu,) of T and the corresponding
1 '
dual basis (e® ), and if

1 t
2, = P23 sothat % = a%ef.
a o' B B8

then the transformation law for the components of S 1s

0(,’ 4 °‘/</ o’ oy S. S} {‘qu
, = N A% ... t
S gll Vv FI A Y, A h Fl A @; S s'__. 5}

39

L —— ]



A, Trautman _ Chapter 2

Any tensor S e T ® U defines 3 homomorphism of U¥ into
T by

def
U¥ 3 U-» 3.y = gHa u,

P

€T,

where S*a, Ug are respectively the components of S and U
with respect to the bases (3*) of T and (%a) of U. C(Clearly

this homomorphism is independent of the particular bases
chosen, and conversely any homomorphism of U#* into T defines
a unique element of T @ U. In particular a tensor of valence
(1,1), i.e. an element of T ® T*, defines an endomorphism of
T, i.e. a linear operator on T. Thus linear operators on T
are elements of T ® 7%,

The tensor product T ® U is sometimes defined as the
space of homomorphisms of U¥ into T.

2.8. MULTIFORMS AND MULTIVECTORS

Let us definé the generalized Kronecker & -symbol by

+1 1f ﬂl”'ﬁm is an even permutation

of Xl"‘«h
gﬂr"'ﬁm - 1 1irf Fi...fh is an odd permutation
oKy e ooy, of xl...dm

0 in all other cases.,

Then if &;,cg, ey wm are m linear forms on g vector space

T, 1.e. are elements or T*, we define their exterior product
(also called the wedge product) by

i % m  def 1o m o, d, N
WAL A At E " - B
Ml Ak ® @ @

(2.26)

It is an element of ®mT*, and the set of all elements of
@™ op the form (,o'/\..-~/\wM span a subspace of ®mT*, denoted

by @MT*, One can easily show that if dim T = n then @mT*
has dimension

Lo
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n 1
_ n!
(m) T m! (n<m)?

and that the set {e“'/\ .. Aexm; 1€ K<y ool <A n}
forms a basis of 1t. Elements of @™T* are called m~forms,
or generically, multiforms. Multiforms which can be expressed
as the exterior product of one-forms (elements of T¥) are
called simple,

The tensor

©F Ygfa @
belongs to @™T* if and only if
w, ... = W (2.27)
o
(l m [dl..xm]’

where the square brackets around the indices denote the
completely antisymmetric part, 1l.e.

def

= 1
Q)[ql..xm] Tl

. We shall use this notation extensively later onj; and also the

? completely symmetric part of a quantity will be denocted by
round brackets placed round the indices. When (2.27) is
satisfied, we easily see that

0(1 0(2

' o«
W= w L. m
4y d e Ae A Ae .

In an analogous manner to the above we can define the

exterior product of vectors and the vector spacel@mT, whose

elements are called m-vectors, or generically, multivectors.
Now let S be an m-dimensional lig§ar subspace of the n-

dimensional vector space T, and let {fa} , a=1,2,...,m be

basis of S.  Then i} cgn be shown that we can always extend
—

this to a basis {fl’fz’ R fn of T by adjoining to it

(n-m) more vectors f .;,..., T,. A basis of T of this form
41
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is said to be adapted to the Subspace S. Let {f‘} be the
dual basis to ﬁ:}, = 1,2,...n. We shall use the follow-

ing ranges for different types of indices:

d,ﬁ,... run from 1 to n
aybys.. run from 1 to m

k,4,... run from (m + 1) to n.

.?
Let {fa'} be another basis of S, such that

-> b -3 r=
£ = 8%, ?1, f, = B2E... (2.28)

a
b

-3
and extend it to a basis {ﬁ(,} of T with corresponding dual

1 t
basis {f“ } - Then there exists g non-singular matrix A;
with inverse Az, such that |
g = P S
ik, A&p%, f Aﬂ hig (2.29)
and from (2.28)
b b k
Aa' = Ba" Aa, = 0
Now we have
!
L', > éx oL > Sx
f £f,) = £(r = 2.30
({31 PI, (/3) [3 (3)
Hence
= K'Y Py ke, k' Ry o ; ;
0O = r (f 1) = (A, £ A, f )(Ba,fb) by (2.29) and (2.28)
= gk'ob e o k' b g, =
= AC Ba,f (fb) + Al Ba,f (fb)
k' b
Ay Bor by (2.30).

But the matrix BZ, is non-singular. So we must have
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and then we have from (2.29)

k' _  k'_.%
f = Ay

We thus see that under a change of adapted basis, the m

-
vectors fa and the (n-m) forms fk transform among themselves
according to

= _ a0 2 k' _ k' R
far = Bgifps f = A, f7. (2.31)

-5 - -
Now construct the m-vector fl AT, A...fm and the (n-m)-

form fTIA ... Af". From (2.31) and (2.26) we then get that
under a change-of basis these transform thus:

- > - a) a, a,- -
£ A For A v AL = ByYBLTLLLBITEL ALl AL
. 1 e
a, a a
_ 1,72 meloo.m 2 rY
= ByvByie. By 6al...am By A ATy

a b d -
(det BJ,) fiA...AT

(2.32)

n

A

They are thus multiplied by a non-zero scalar factor under
such a change of basis, and so we see that S determines to
within a scalar factor an m-vector and an (n-m)~form. Either
of these is sufficlent completely to determine S, as it is
, easlily seen that two different m-dimensional subspaces deter-
) ‘ mine different m-vectors and (n-m)-forms.

T
m+l),\ . m”/\‘-

o ( n' _ k!
and similarly AT = (det A {)f

2.9. ORIENTATION OF VECTOR SPACES AND SUBSPACES
Let (T+, R++,.L ) be an n-dimensional vector space over

the field R of real numbers, and let S be an m-dimensional
linear subspace of T. Let ¥ be the set of all bases of S,
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and let f;}, {i;}, 2 =1,2,...m be two such bases, related
by

Then we define an equivalence relation R+ on 3-by writing
—~ -
{r.} = {7} (moa re)
to mean
det B2, > 0.

We can then form the quotient set 3‘/R+, which clearly has
Just two elements. If one of these elements is singled out
and called the positive sense, the other element being called
the negative sense, S is said to be provided with an outer
orientation if the quotient space T/S has an inner orienta-
tion.

To 1llustrate this we shall consider the case of n = 3,
m=2. 3 is then g plane in 3-dimensional space, and a basis
of 8 consists of an ordered palr of non-parallel vectors. We
easily see that two Such bases are contained in the S ame
equivalence class if we have to rotate in the same direction
to get from the first ‘vector to the second by a rotation
through an angle less thanr.

(1) 7, 11\ F, (i11)

- 1 f2

tion in a plane is thus providea by giving g direction of ro-

Now consider an outer orientation in t@g Same example.
We must first construc@ﬁT/S. Two vectors E, D € T are
congruent (mod S) if 3-T eg. Hence the equivalence classes

of S can be represented by g family of planes parallel to S.

once, and-a basis of T/3 consists of one element, a directed
segment of this line. An inner orientation of T/S is thus

Ly
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seen to consist of a direction along this line. Hence an
outer orientation of a plane in 3-dimensional space is pro-
vided by a directed vector not lying in the plane. The two
concepts are illustrated in the following diagrams.

/

'
1
!
1
1

:

/

An inner orientation on An outer orientation on a
a plane. plane in 3 dimensions.

The whole space T cannot be given an outer orientation,
but may be given an inner orientation, or simply, an orienta-
tion. If an orientation of T is given, then with any inner
orientation of 3 we cag,associate an outer orlentation as
follows: Let {fz,...,%l} be a basis of S with positive inner

orientation. Extend it to a basis {F. sevesf Jof T with

positive orientation. Let ¢ be the caggnical mappi%g of T

to T/S. Then we define the basis {¢(fm+l),..., ?( n)} of
T/8 as having positive orientation, and this provides an.outer
orientation of S. ’

An example of this is the famlliar process of defining
the positive normal direction to a directed loop by the
'pight-handed corkscrew rule." What this is doing is assocla-
ting with an inner orientation of a 2-dimensional space the
outer orientation induced by the orientation of the 3-dimen-
sional space provided by a right-handed triad.

An orientation of T can be specified by giving a func-
tion 6§ of F to R such that § =1 and

5{51} = S{%,} if and only if {E:}z{e—:(,} (mod R+).

Then we see that if

def
4 = AP - A
e&, AK' %ﬂ and A det Q‘,

then

o
PSS
[¢]
,:J,
g
|
-
e
,_‘L
g

s
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—

@9 = (@0 +1(3,3). (2.35)

If we now agree that the element (3,83 € T x T will simply
be written as ¥, then from (2.35) we get

A% = T+ 17 : (2.36)

If, as usual, we now omit the operation symbols - and 1,
then we can say that the complexificgtign of T consists of
of all vectors of the form T + iv, u, v € T, obeying the
rules

@+ 1) + @+ 1) = T+ +1(F+ )
(a + 1b)(X + 1?) = (ab - b)) + 10T + a¥),

which is the form taken by (1) and (ii1) in the new notation.
These are just the expressions we would expect by formal
éxpansion of the left-hand sides. But this can only be
justified by the above argument. - -

Ifr U, ¥ eT, the complex conjugate of (U,¥) € T x T
1s defined to be (¥, -%), i.e.

(T +17)* = T - 12,

2.12. EUCLIDEAN VECTOR SPACES

Let (T+, R+:, L) be g vector space over the real field
R. A scalar product on T is a mapping of T x 7 to R, denoted
by

-
P R v,

which satisfies

1y T3 = v . (symmetry)

(11) ¥ - (a¥ + SED) ald - 7(+ bl - W (linearity in the
second factor), .
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where 3,7,W ¢T and a,b € R. We note that (i) and (ii) to-
gether imply linearity in the first factor also. If the
Scalar product also satisfies

(111) A7 = O for all ¥ e T if and only if ¥ =10
4t is sald to be non-degenerate. If this 1s not so, it 1is

said to be degenerate. A vector space provided with a scalar
product 1is gglled a Euclidean vector space.

Let %a} be a basis of T and define the scalars %dp by
de - =
g 2%, (2.37)
4“p

If {51,} is another basis of T and

- g - - B =
<=.ﬂ(,_—~/5\°(,€:f3 , estK ey (2.38)
and we also write
def -
£ . 2.
3“/(5: . ‘é:(l eﬂ' (2-39)
then
¥ ,§
30(7&,: Ay AP’ jx&' (2.40)

It follows from this that the scalars 8,4 C2N be interpreted

as the components with respect to the Dbasis E%}, of a tensor

of valence (0,2). If %ﬂ} is the basis of T¥ dual to {a} s
then the tensor itself is gilven by

9= 9 e e T'eT® (2.41)

This tensor 1is called the covariant metric tensor of the
Euclidean vector space T. The matrix gy, is non-singular
if, and only 1if, the scalar product is non-degenerate.

A non-singular covariant metric tensor defines a natural
isomorphism between T and T¥* in the manner described in
Section 2.7. In this isomorphism there corresponds to the

vector'a = ufEi e T the linear form u € T¥ defined by

u fmu“e” (2.42)
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If the inverse of the matrix gxp 1s denoted by g*/’ s SO that

3¥3p1= 6; 4

then comvergelyJ to the linear form v =

v e e 7 corresioonds
the vector ¥ € T given by

More generally we see that g can pe used to define g

natural isomorphism between (@kT) ® (@‘T*) and (@mT)®(nT’é),
Provided k + g = m + n, ang again two tensors related

Given a non-degenerate scalar product on T we can de-
fine a scalar product on T% gg follows: irf U, v.e T% gng ir

they correspond in the naturagl isomorphism to U, v e T, then
we define ‘

(2.44)

Let S € T*¥ be the linear form that corresponds to _eZ( €T
in the natural isomorphism. Then since

E:L= “(Z) E’p where “cﬁ) = 55 .
applying (2.142) gives
% = Jpy LWL Jex e,
S0 that
e = 3“’3% . (2.45)

But from (2.uyy,
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- -
%.ep = q‘-ep

s

and hence using (2.45), s
K B LAY LB .
eret =979 6 &

300 3,3{ 3:8‘

1

Hence

it

e“. e’s 3“@

which is the formula for T¥* analogous to (2.37) for T. We

see that under the change of basis given by (2.38), 2P
transforms according to

«'p’ & A B %8
3P= AXASS R

and so the scalars gdﬁ can be considered as the components of
a tensor G & T ®T, defined by

def 5 =
G & S“Fedaep .

and called the contravariant metric tensor.

Given an n-dimensional Buclidean vector space T it can
be shown that it is always possible to choose a basis {i‘}
of it such that

+1 if 1sa=pehemn,
Lot =4 -l i hed=pelem,
0 in  olt other Cases,

for some integers k,,ﬂ which are characteristic of T4 i.e.
are the same for gll such bases {LJ‘If L0 the scalar
product is degenerate and the space is saild to be singular.
It = n, the scalar product is non-degenerate, and such a
basis is called orthonormal. wWe further subdivide this case:
If k'= 0 or k = n, the space 1s called an ordinary FEuclidean
space. If 0 < k ¢ n, the space is called a pseudo-FEuclidean
space and 2k-n is called its signature. The particular case
of a pseudo-Euclidean space which has n = by k =1 or 3 is
called a Minkowski vector space. This is the space used in
the special theory of relativity. We shall use a metric for
this space which has k = 1 but will change the numbering of
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the basis vectors so that for an orthonormal basis,

=89 =, J =t s Jap =0 for atb

and we shall use small Latin letters to run from 1 to 4.

field R, and we complexify it in the manner explained in
Section 2.11, we can introduce in a natural way a scalar
product in the complexified space by

This is easily seen to satisfy the requirements of symmetry
and bilinearity, and it is non~-degenerate if, and only ir,
the space T is non-singular.

Now let S be a linear sSubspace of the Euclidean vector
space T. Then we can define on S the scalar product induced
by T thus:

ir 3,7 e s then (TP, = AT

[ 5]

SaRssaE

If T is an ordinary Euclidean space, the scalar product in-
duced on S is always non—degenerate, slnce in such a space,

74 0 implies %3 # 0. But if T is g pseudo-Euclidean space
it 1s possible for the induced metric Qg be degenerate,gi.e.
S .can contain a vector % % g such that X7 = 0 for all U e 3.

Such an S is called a null subspace of T. We note that in
particular the vector I satisfies R.-¥ = 0, i.e. ¥ 1is a null
vector.

It was shown in Section 2.8 that an m-dimensional sub-

space S of T can be characterized by an m-vector determined

by S up to a scalar factor. TLet £ % be the components
of such an m-vector characterizing S, so that

}d;""“m _ { [e(..,. e(,“]

= .

Then it can be shown that S is null irf and only if there
exlsts a vector Xk # 0 such that

. x."""»‘
(1) :; ‘&dh = O
and

oeee hon g o]
(11) i 5&‘ = 0
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(ii) is the condition that ® € S and (i) implies that ¥ is
orthogonal to every element of S. (Two vectors ﬁ, Vel
are sald to be orthogonal if W-¥ = 0.)

A

Reference
1. N. Bourbaki, fléments de Mathématique, Livre II, Algébre,
Ch. 1,2.
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3. MINKOWSKI SPACE AND LORENTZ TRANSFORMATIONS

3.1. MINKOWSKI VECTOR SPACES

We have already defined a Minkowski vector space M as
a 4-dimensional pseudo-Euclidean vector space over the real
field R of signature % 2, and have said that we shall use the
signature -2. A vector @ € M is called

time-like if TW-T > 0
null if TT=0
space-like if T. W< 0.

A linear subspace S of M is said to be

space-like if all its vectors are space~like

time-~like if it contains a time-like vector.

We have already defined a null subspace S of M as one contain-

ing a null Vector-g such that B+ T = 0, all We S. So a null

subspace can never be Space-like. We shall now show that a
time-like vector cannot be orthogonal to a null vector, so
that a null subspace cannot be time-like either. So every
subspace S of M is precisely one of the following: space-like,
null or tige—like.

Let t be any time-like vector. Then there exists an

orthonormal basis of M in which t2 = 0 if az 4
3“:3,&:333:-4, 3“"‘:+,

Let t2 = (0,0,0,t) and let T be any vector orthogonal to T.
Then if u? = (u,v,w,x), we have
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o= U"?: tX , so that x=o0.

Hence

—

U-U= —W=Viaw?* ¢ 0,

and so W is space-like. Thus, as stated above, a time-1like
vector cannot be orthogonal to a null vector or to another
time-like vector. We also can easily show that two null
vectors are orthogonal if and only if they are proportional
(i.e. parallel).

et % be the set of time-like vectors of M. Define an

equivalence relation t on¥ by writing, for @, 9ed
0=V (mod™) to mean UW-V»0O

We can now form the quotient %/, and it clearly contalns
just two elements. If now one of these elements is singled
out and called the positive time direction, the Minkowski
vector space 1s sald to be orlented in time. The singled-
out element of %) /1 1is called the future and the other
element is called the past. The set of all null vectors
forms a cone, called the null cone, as indicated in the
diagram. The future-pointing time-like vectors all lie inside
one sheet of the cone, called the future sheet, and the past-
pointing time-like vectors all lie inside the other sheet,
called the past sheet. We use the notation T for the equiva-
lence relation because of this connection with the direction
of time.

null cone

5.utur<a sheel /

Fqst sheel

~
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3.2. LORENTZ TRANSFORMATIONS
We showed in section 2.7 that an element of the tensor

product T ® T¥* defines an endomorphism of the vector space T.
Now for T take the Minkowski vector Space M, and let L& MoM¥

We shall write the endomorphism of M defined by L thus:

MW=L WeM,

L i1s called a Lorentz transformation if, for every Te M,

LTl = W-W. (3.1)
If 'we now let U, Ve L, then from (3.1) we must have

L)L (@) = (e T) o (Tr )

L2 2+l T LF + B D= U1 TF + T
and hence by (3.1) this gives
(- (F= 7. (3.2)

Thus a Lorentz transformation of M is a linear transformation
which preserves scalar products.
Now let Ll and L2 be two Lorentz transformations. We

define their product L1L2 by
L‘leés_‘ L) (3.3)

for U e M, and we easily verify that this is also a Lorentz
transformation. Clearly the identity transformation is a
Lorentz transformation, and from (3.1) it follows that L 1is

a non-singular mapping and so has an inverse L~1. So with
respect to the product defined by (3.3), Lorentz transforma-
tions form a group, called the Lorentz group. .
Using the notation of sections 3.1 and 2.9, a Lorentz
transformation L is saild to be orthochronous if, for every

n e D,
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[LT=T (med T,

and is said to be orientation-preserving if for every basis
{8,y of M,

L i ={23(modRy).

If it is both orthochronous and orientation-preserving, then
L is called proper. A proper Lorentz transformation thus
preserves the direction in time of time-like vectors and
preserves the inner orientation defined by a triad of space-
Jike vectors. We easily see that proper Lorentz transformag-
tions form a subgroup of the Lorentz group, called the proper

Lorentz group.

3.3.- NULL TETRAD AND THE SPECIAL LINEAR GROUP SL(2,C)

Let {X,y t} be an orthonormal basis of Minkowski
space M such that

X=Q'=Z%=-T%=-1, (3.4)

0 def ~ _
where we write U = T-U, and let ¥ be the complexification
of M as defined in Section 2.11, provided with the scalar

product induced by M as defined in Section 2.12. Define
vectors? @, T , e M by

AM=X+1Y
BTl=%+ 72 (3.5)
Rr=tT-%

so that S E=¥X- ,i’g’

¥ These are the same as the vectors introduced by Professor
Pirani 1n his gourse of lectures, but _,corresponding to our
vectors T, T , T he used the notation t k
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where ¥ denotes complex conjugate. Thenf{ , B are real, T, T*
are complex, and together they form a basis of M. We easily
see that they are all null vectors, and that the only non-
zero scalar products between them are

TR=1 MR -1 (3.6)

A set of four null vectors with these properties is called a
null tetrad.

Let&e M. As explained in Section 2.11 we can also
consider it as being in 1, and hence it can be expressed in
terms of the basis £, B, ™, T¥ of M thus:

:Pi"+c‘1"+rﬁ +S’m*, P]%,r,seQ

and by scalarly multiplying this separately by ﬁ,z ,'ﬁ,'ﬁ*
and using (3.6) we obtain p, ¢, r, s so that

= @R + GRT — (@)~ @RHR (3.7)

Squaring both sides of this equation gives

o

A= 2@ DETY- 2@ )& m") (3.8)

5
25

Now let us define a function &-» A(Z) on M mapplng M
into the group of (2 x 2) complex matrices by

Am)“ﬁ(af a-ﬁ*> . : (3.9)
am R :

If we define symbolically the 2 x 2 matrix & whose elements
are vectors of M by
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then (3.9) can be symbolically written as

AR = R-& (3.10)
Now @ e M, and hence &L » @+ 7 are real numbers and T. &,
ﬁ

. @+ W* are complex conjugate numbers. So from (3.9) the

matrix A(Z) is hermitian. Also, from (3.7) and (3.9) we see
that any 2 x 2 hermitian matrix H determines a vector Fe M
by A(Z) = H. Equation (3.9) thus defines a one-to-one
correspondence between vectors of M and hermitian (2 x 2)
matrices.

From (3.8) and (3.9) we get

R= b A@). (3.11)
Let SL(2,C) be the special linear group of order 2 over the

complex field C, i.e. the group of 2 x 2 complex matrices
whose determinants are unity (i.e. they are unimodular).

Let Ue SL(2,C) and 3¢ M. Then UA(®)UT 1is a hermitian

+

matrix, where denotes hermitian conjugate, and hence there

€xists a unique 3'e M such that
Ac=UAEUT (3.12)

Now det U = 1, and hence

dtAy= dt U dtAa) et UT
= LA,

and so by (3.11)

@y=a, (3.13)

But clearly the correspondence &— RB' defined by (3.12) is
linear. If we write

a=Lwa (3.14)

then (3.13) gives
LR L& = B-& , ofl Te M.
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Thus from (3.1), L(W) is a Lorentz transformation. We see
from (3.12) that L{W) = L(~W), and hence bothz U give rise
to the same Lorentz transformation. It can be shown that

L(W) is a proper Lorentsz transformation, that every proper
Lorentz transformation L can be obtained in this way from

some Ue SL(2,C), and that L determines this U to within a
sign.

Now let Up, U, e SL(2,C). Then

il

ALWUWR) = v, A@)UHUT

UACLWIR)UT

it

ACL WY LWIE)

i

for all Fe M, by repeated use of (3.12) and (3.14). Thus

LW = L.

The mapping W - L(W) is thus a homomorphism of the group
SL(2,C) onto the proper Lorentz group which preserves the
group structure. If we define an equivalence relation X on
SL(2,C) by writing

Uz Vimed X) to mean U=V or U=z -V

and let B be the canonical mapping of SL(2,C) to SL(2,C)/%,
then we see that the mapping & (u)— L(u) for ue SL(2,C)

group SL(2,C)/X.
As an example of this correspondence, consider

U = i(eféé O
o a:“%)

Then we easlly see that
¥ = oy il Y i
LA)= T, LR | L=<, Loy oit*

and so from (3.5)
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L) = Reoed Y wimg

L= -Raing+ G coag
Leay=2, L=

Tnis 1s a rotation through an angle ¢ 1in the X,¥ plane.

3.4. LORENTZ TRANSFORMATIONS AND BILINEAR TRANSFORMATIONS
OF THE COMPLEX PLANE

Let X be any real null vector, so that ?{2 = 0. Then

ir ¥ is not parallel to X, l;ﬁ 0. Define a mapping K-$(K)
of real null vectors not parallel to 1 into C by

4K 0 _ (3.15)

’“F

’k’.

Then if€# 0, K- T # 0 and from (3.8) for & = ¥ we get

(K)=-F-RE —RE (3.16)
JR=-EH=-RL

=y
IrR-¥ =0 then K- TR % 0 and from (3.8) K+ # = 0. The
second term in (3.16) then becomes the indeterminate 0/0

while the last term becomes _1?";1'/0 =o , So if we let (
denote the extended complex plane, 1.e. C together withew |

we can extend our map TZ—*S(?) to include the case Tgf =0

by then definingS(T{’) =, It is then a mapglng of.all real
null vectors into the extended complex plane T
Now from (3.7) and (3.16), if €#

= (R-L)(H+ 86T+ S+ §*M™) (3.17)

and so 8 determines the direction of ¥, which we write as

G(R). G(K) denotes the one-dimensional vector subspace of M
given by
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G(ﬁ)‘i‘!’{a‘?; aeCy .

If‘S(f) =®, then by definition K e G(X). Hence in all cases

§ determines the direction of ¥. We therefore have derfined a
one-to-one correspondence between directions of real null
vectors and the extended complex plane.

Now let L(u) be the proper Lorentz transformation cor-
responding to the unimodular matrix

u:@-g), ad-bc= |

Let ® be a real null vector, and put

9=5@&), §=8(LwR).

Then using (3.12) and

which comes from (3.9) and (3.17), we get

€= c+ds (3.18)

a+beg

which is a bilinear (fractinal linear) transformation of the
extended complex plane.

We have thus obtained a mapping of proper Lorentz
transformations into the group of bilinear transformations
of the extended complex plane. But also, given any bilinear
transformation (3.18) it determines the ratios of a:b:ic:d,
and together with the condition ad-be = 1, we see that a,
b,c,d are determined to within a common sign, and so U is
determined to within a sign. But this then determines g
unique proper Lorentz transformation. We have thus shown
that: .

There exists a one-to-one correspondence between proper
Lorentz transformations and bilinear transformations of the
extended complex plane.

Now a bilinear transformation which is not the identity
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has just two fixed points, which may be coincident, and such

a fixed point corresponds to a real null direction which is

ieft invariant by the corresponding proper Lorentz transforma~

tion. We thus see that a proper Lorentz transformation leaves

unaltered two real null directions, which may be colncident.
We leave the following as an exerclse:

Exercise

Prove that for every proper Lorentz transformation L
which is not the identity transformation, there exists a
null tetrad B, T, M, ®¥ such that:

(i) if L leaves invariant two distinct real null
directions,

L = <"
LT =T
L= &t

where ¢ , ¥ are real numbers

or (ii) if L leaves invariant only one real null direction,
+2R

+2 R ZFM A2

—
S o4 3
1}
=) = F)

i

—

where z is a complex number.

3.5. SPINORS

In Section 3.3 we defined a matrix & of vectors of M
by

Using (3.5) this can be written as

(53 79)
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.

T=1f+5 %X+ o:a"«g-\-o;—f
(3.19)

where I is the 2 x 2 unit matrix and fom

x* Oys Oz are the
Pauli spin matrices defined by J

S=(0 1 o5 =fo-1 G =1 o) (3.20)
GESE =378 o -1

Now from (3.10), (3.12) ang (3.14) we have

(L) = Uyt

But from (3.2),

LW -F = 1" end

where in the term L_l(u)g‘, & is considered as a vector whose
components are 2 x 2 matrices. So we now have .

a&we = a-Usryt

and this holds for all B e M. Therefore
-t
Lwe = usut

LWa = U-\é_., (U-)"l’ (3.21)

or

This gives the transformation law of the matrix @& when we

L
make a Lorentz transformation of the vectorsT, M, & used in
defining it.

Now in Section 3.3 we show that

Low) = Lwy L. (3.22)

If we insert the dependence and write U(L) to denote the
2 X 2 unimodular matrix determinegd by L to within a sign,
it follows from (3.22) that
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UILYUL)=+ UL LY . (3.23)

The matrices U(L) are said to form a two-valued representation
of the proper Lorentz group. So do the complex conjugate
matrices U*¥(L), as we see from (3.23) that we also have

URLUTL)=+ URLLY) . (3.214)

Now déefine two complex 2-dimensional vector spaces V and V,
such that when we transform M with the Lorentz transformation
L, then V and V are transformed respectively with U(L) and
U*(L) Elements of V are called spinors of valence (1,0)

and elements of V are called conjugate spinors of valence
(1,0). Then, just as for tensors, we can define spinors of
hlgher valence as elements of repeated tensor products of

V; V and their duals V¥, V%, From (3.21) we have

5= LwUa Ut

and so we see that if we regard & as an element of M® V &V,
it is invariant under a Lorentz transformation. We can then
use & to define an isomorphism between V¥ ® V% and M in the
manner explained in Section 2.7.

Closely related to the matrix & is the matrlx‘r defined

a4 =Ji(?t —ﬁ*)
L

This is related to & by

by

U=e &>

where
eE=/0 |
-1 O

In the same way that & can be considered as an invariant ele-
ment  of M® VeV, it can be shown that e can be considered as
an invariant element of V¥ ® V¥ or V# ® V¥, and ¥ as an in-
variant element of M ® V¥ & V¥,
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We leave the following results as exercises.
Excercise 1.

Prove that

where ® denotes both the tensor and matrix product, G is the
contravariant metric tensor of Minkowski space, and I is the
2 x 2 unit matrix.
Exercise 2.

If ue V* and ut is its hermitian conjugate, u being

considered as a column vector so that u¥ is a row vector,
then

—
R Gy
A
is a real null vector and

=4 ==y
wl'= L %-7C.

This is\@ barticular example of the isomorphism between M
and V¥ ® V¥ determined by 5.

Exercise 3.
Z2ETC1lSe 5

Prove that T satisfies the equation

Lw)R= U'RU .

This proves that ¥ is invariant under Lorentz transformations
when considered as an element of M & V¥ & V¥,

Reference

1. R. Penrose and Ww. Rindler, Spinor Calculus, in prepara-~
tion.
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4, DIFFERENTIAL GEOMETRY

4, 1. TOPOLOGICAL SPACES

We begin this Chapter by outlining that portion of
point set topology that we shall need in our study of dif-
ferentiable manifolds later in the Chapter.

Let X be any set and 6 be a collection of subsets of X
such that

(i) The empty set 4)&9 and X € ©
(i1) Ir V‘ee for all &I, where I 1s an arbitrary

set, then I&ezv,( 17} "
(111) IfVy,V,,...,V €0 then i.q \/‘ e d
where {J and n respectively denote the union and intersection
of sets. Then O is said to define a topology for X, and X
is then called a topological space. The subsets of X con-
tained in © are called open sets of X.

We give now some examples of topologies for an arbitrary
set X. Each of the following definitions of 8 gives a topo-
logy forX:

(1) O contains all subsets of X,

(ii) © contains the empty set{iand all subsets of X
that contain all but a finite number of elements
of Xs

(111) 0 = {$X}.

If a set X is provided with two topologies © and 8,8
is said to be a stronger topology than O if every subset of

X contained in 8 is also contained in ®. In this case we
also say that © is a weaker topology than ®’. 1In the above
example (i) is stronger than (ii) which in turn is stronger
than (iii). (i) is the strongest possible topology for X
and (iii) is the weakest possible topology.

A neighborhood of p € X is any open set containing p.
The sequence of points piex, i=1,2,... 1s sald to converge

1

to the point p & X if every neighborhood of p contains all but
a finite number of the points Py and then p 1s called limit
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of the sequence. It is possible for a sequence to have sev-
eral different limits. 1In the examples above, with topology
(i11) every Sequence converges to €very point of X. With
topology (i), no sequence containing an infinite number of
different points can converge to any limit at all. For this
Peason, the topology (1) for ¥ is called the discrete topo-

logy.

A topological space {X,B} that satisfies the Hausdorrr
axiom, namely: 1I¢ P,q are distinct points of X then there
exist neighborhoods U s Ug, or D>q respectively such that
Uy n Uq = is called a Hausdorff space. It is easily seen
that in a Hausdorffspace a sequence cannot have two distinet

A collection B c O of open sets of X is called a bagse
of the topological Space 1if every open set can be eXpressed
as the union orf (possibly an infinite number) elements of B.
A base is saig to be countable if it contains g denumerab le
number of elements.

If R is the real field, ang a,b&R, with 3 < b, then
the subset of R given by a<x<¢b is called an open interval
of R. We define the natursgi topology 6 orf R by taking as 7
base the set of all open intervals of R.

A topological Space {X,B} 1s called connected if X is
not the union orf two disjoint non-empty open sets.

4.2, PrRODUCTS OF TOPOLOGICAL SPACES

Let {X,e}, {xﬁbﬂ be two topological Spaces. Define
a set B of subsets of the Cartesian product Xx X by

B = {u.xu.’: ue o, ue 9'},

Then we can define g topology on XxX'by Saying that B forms

a base of this topology, 50 that the open sets are the union
of elements of B., Clearly this satisfies al1 the axioms for g
topology, and XxX'endoweqd with this topology is called the
topological product’sggce of the topological Spaces {X,O}

number space ROY = RxRx...xR to n factors by defining it
to have the product topology when R has its natural topology.

This 'is called the natural topology of RD,
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;3. CONTINUOUS FUNCTIONS AND HOMEOMORPHISMS

Let {%.0} and {X} 0'} be two topological spaces, and
Jet f be a funétion on X with values in X', written

B s

X2p = f(p) X

£ is said to be continous at peXif, corresponding to every
neighborhood V' ¢ @ of f(p), there is a neighborhood Ve &
of p such that

g eV implies f(q)e V'.

£ is said to be continuous on a subset DcXif it is continu-
ous at every point of D. .
If £ is a one-to-one mapping of X onto X'such that

both f and its inverse f_l are continuous, then f is called

5 homeomorphism of X onto X, If V is a subset of X, we de-
fine f(V) as a subset of X' by
ge r(V) if there exists a p e V such that q = f{p).

Then f is a homeomorphism of X onto X’ 1f and only if: £(V)
is open in X'if and only if V is open in X

k.4, DIFFERENTIABLE MANIFOLDS

. [
A function f mapping R to R is sald to be of class C

in some region of R? if it is & times differentiable and
its 2th derivatives are continuous in that region. It 1s

said to be of class ¢® in a region of R® if it is differen-
tiable an infinite number of times in that region.

Let {_X,O} be a connected Hausdorff space with a count-
basis. Let n be a positve integer and % be a positve integer
ore , and let & be a family of real-valued functions defined
on X satisfying the following axioms:

(1) if f is a real-valued function defined on ¥ such .
that to every point aeXthere corresponds a neigh-
borhood U of a and a function ge® such that
f(b) = g(b) for all b& U, then fed.
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(11) if k is a positive integer ang gl,gg,...,gke o,
and if f is g real-valued function defined on Rk

of class CZ, then f(gl,gg,...,gk)e D .

(ii1) +to every pdint aeX there corresponds a neighborp-
hood U or a and n functions xl,xg,...,xn € D such
that

(a)  the mapping Uz b — (x't, X (B, oo, x™Cb) )eR™

is a homeomorphism of U onto g subset of rU
(b) to every fe Qcorresponds a function F de-

2
fined on Rn, of class ¢ such that if be U
then

b = F(x'e, x),.... ") )

Then the triple {X,O,rﬂis said to be an n-dimensional dif-
2
ferentiable manifold, of class C" and the functions contained

in D are calleq differentiable functions on X to R. The
et @D e lunctions
1,...,Xn} of differentiable functions defined by axiom
(11i) are calldg local coordinates in U (or aroungd a). 1Ir
they further satisfy axiom 1ii) for U = X, they are called

global coordinates. Global coordinates neeg not necessarily
exist,

When dealing with differentiable manifolds, one must
always keep clear in one's mind the distinction between the
Space X and the Space RN to which it is locally homeomorphic.
The points of the manirfolg are points of X, but the coordin-

ates of the points of X are points of R, Ir for a eXwe
write x(a) as an abbreviation for the set {xl(a),...,xn(a)}
ERn, the diagram below illustrates the relationship between
X and rY, The space X is a topological Space whose elements

are of an unspecified nature, while the space R" is Just an
ordinary (BEuclidean) Space whose elements are n- tuples orf
real numbers. Between these two spaces there is 2 local

n . .
/4{in~d1mens1onal

X, the differentiable manifold number space
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As a simple example, the real line R can be defined as

[}
a C differentiable manifold by taking ford) the set of all

le functions on R (in the usual sense of real

%
¢ differentiab
defining global coordinates by x(a) = a,

analysis), and
aeR, x€R.

Analytic manifolds can also be defined, but this re-

L
We cannot just replace C by ¢® in the

quires more care.
c® peing the class of analytic functions.

above definition,

4.5. COORDINATE TRANSFORMATIONS
Let {X,Q,I)} be an n-dimensional dgifferentiable manifold.
From NoOw on we shall for simplicity only consider differen-
tiable manifolds of class ¢®, but the work can easily be
modified to apply also for class Cl, % finite. Let pe X,
1
and let {Xa s {xa} be two sets of local coordinates around
p, defined respectively on neighborhoods U, U' of p. Then
1
since xa, x%ed, by axiom (iiib) there exist ¢ -functions

1
F2, 72 on R" to R, for a, a' = 1,2,...,n, such that

1""@,) = F""(x'q,)} x*@y, - X)) for g€ U .

and

xq)= FA(x ), @), - X)) for ge Ul (h.2)

Now the intersection UnU' of U and U' is not empty, as

pelnNU', and it is open as U and UI' are open. It is there-

fore a neighborhood of p. Let = ,= be respectively the

image of UNU' under the mappings 4 - x8(q), q-* za' (q).
Since these are homeomorphisms, = and =' are open subsets of

r®. We see that both (4.1) and (4.2) are valid in UNU',
and hence on substitubting (4.1) into (4.2) we get

x* = Fa(F',(xb), F:J(xb))_ _._Fn’(_xb)) forau{xb} e =

Differentiabing this with respect to Xb gives

T




A. Trautman Chapter 4

éq' = (,a_f.al> . (_a__E_Ct) fof all {xd} & Z
b dx fer. Fead) axb /i d

and hence we see that the Jacobian matrices

[
; aEa, , dES
dxb ox
1 — —
are non-singular for {Xa}e :__I, {Xa}e; respectively. These
Jacobian matrices are usually written as

]
ax“, and Ixt
I xb 2z b

[ —_—
respectively, and the transformation in R™ mapping = to =
defined by

1 Y
xts x* - F¥(xb)

is called a coordinate transformation in the neighborhood

Unu' of p. a '
Conversely, Suppose one is given a set X7 of loecal

coordinates in the neighborhood U of pe X whose image under

— t
q - {Xa(q)}é R 15T, Let m% sal = 1'.2' .. n' pe n o
1
functions on R% to R such that the Jacobian matrix dF2 /Bxb

—_— 1
is non-singular on=. Then the n functions q- x2 {q) on
X to R defineqd by

] al
XM(g) = FA(X'@), -2 g)
are; by axiom (ii), containeq ind, and we see that they

satisfy the conditions for loeal coordinates on U. The
transformation in R® given by

x5 xt o F“'(x")

is thus a coordinate transformation in U.
It should be noted that a coordinate transformation is
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a tr%?sformation in the auxiliary space Rn, not in the mani-
fold X.

4.6. DIFFERENTIABLE MAPPINGS

Let (X,8,D) and (Y,P, ) be two differentiable mani-
folds, and let h be a mapping of X into Y. If f is any
function defined on Y, with values in some set Z, we define
the function feh of X into Z by

feh(p = f(hep) for peX.

Then the mapping h is saild to be differentiable if

ge ¢ implies gah eD.

If h 1s a homeomorphism of X into Y such that both h

and h—l are differentiable, h is called a diffeomorphism.
In this case both manifolds must have the same dimension.

RS R . ...

4.7. PRODUCTS OF DIFFERENTIABLE MANIFOLDS

Let (X,8,D) and (Y,P,'® be two differentiable manifolds
of dimensions m, n respectively. Define the projection
operators T, X on the Cartesian set product XxY by

Xe¥ 2 (pq) = T(pg)=pe X
XxY 5 (phg) = X(by)egeY.

Form the topological product space (X¥xY,@) of the topologi-
cal spaces (X,8 ) and (Y, P) and define a set F of real-
valued functions on XxY as follows: The function f,

KxY 2 (by) —» f(bq) e R

is to be in F if and only if, for any (p,q)€& XxY and any
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local coordinate systems {x"_} on a neighborhood U of p and
{ya} on a neighborhood V of q, there exists a function K on
R™7 or class C*® such that

JC = K(x'° TT)"') x,moﬂ' I yl"xz"' 'yn"x)

for all (p,q)€& UxV. Then it can be shown that (XxY,Q, F)
satisfies all the axioms of an (m+n)-dimensional differen-
tiable manifold. It is called the product of the differen-
tlable manifolds (X, 8 ,d ) and (Y, (Jg, €). It can easily be
generalized to the product of any finite number of differen-
tiable manifolds.

4.8. TANGENT VECTORS

Let (X,0 ,P) ve an n-dimensional differentiable mani-
fold and let peX. Let U be a linear mapping of D into R
such that for any f,g el

L(f9) = §BHIRQ) + 9(p) K(f) (4.3)

where fg denotes the ordinary product of the functions f
and g. Then T is called a tangent vector to X at p. If

»V are tangent vectors to X at p, and aeR, we define the
mappings ﬁ+% and a¥l of § to R by

LE+‘-”)(3‘): —Ut(f) -r’t_;(f)
, (4.4)
@& = a(B¢>)

for all red. Clearly these are linear mappings and they
satisfy (4.3). Then with these definitions we see that the
set of all tangent vectors at pexX forms a vector space over
R, denoted by T_.

Now let -{_Xa}, a=1,2,...,n, be a system of local co=-
ordinates around p. Then xaeﬂ. Define

W Ry e R ¥y e R (hLs)
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Let fe®d. Then there exists a function F on RY to R of
class C®such that

f4) = F(x'q), -, x™() (4.6)

for all q in some neighborhood of p. But as F is of class
C‘o, there exist n2 functions Ga , a,b = 1,2,...,n of R™ to

b
R and of class C% such that

Faor= Ry + (- ::c‘,")%fal + (8- x:‘)(x‘i'-xa”)Gazx) (4.7)
x® lx

where we have abbreviated xl,...,xn to x. Now any constant

aeR can also be regarded as a function ind, p - a eR for
all peX. Putting g = a€R in (4.3) gives

Kf)= f(pR W@+ aB() L ok fed

But by the linearity of T,

L) = avd)
and hence

Kw=0, aeR, (4.8)
Now in (4.7) remember that x% el so that F(x), Gab(x)e‘,b,

and then let W act on both sides of the equation, using (4.3),
(4.5) and (4.8). We get -

C(Fx) = u® 2k
ox*

%y

and since from (4.6), £ = F(x), we have

T4 = u® oF (4.9)
ox® lx=2x(p)
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Now consider the n linear maps orf Dtonr defined by

Dof-ap ¥ éfa[ y Azhdeem (4.10)
ox* Lz xgy)

This satisfies (4.3) and hence the €, are tangent vectors at
p. Equation (4.9) can then be writtén as

R(f)= ue (§) forall §¢ 9
and hence

K = u €. (4.11)

The ?; are clearly independent and so they form a bagsis or
the tangent vector space at p, Tp. The basis {5;} of Tp is
called the natural basis assoclated with the local coordinates
x%}. One can write

ﬁ
- 9
€, = e
so that
e f) = %‘f‘[« (4.12)

but this must be interpreted in the sense of (4.10). From
(4.11) we see that the real numbers u® defined by (L4.5) are

the components of u with respect to the basis {5;}.
t
Now let x% bpe new local coordinates around p. Then,

1
as in section 4.5, there exist n C™runctions F® on R" to R
such that )

x09) = F¥(x'tyy, x'(g), - x"(4))

for q in some neighborhood of p. Then if {éZ'} is the natural
1
basis of Tp associated with the local coordinates {Xa }, and
1

ir u® are the components of 3 with respect to this basis,
(4.5) and (4.9) give
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W= T = wbar® (4.13)

As explained in section 4.5, one often writes

!

dF2 as 9x% .
xb axb

Equation (4.13) can then be written as

] ¥
o= 2 wb (4.14)
ox

which is the usual definition of a vector on a differentiable
manifold in terms of the transformation law of its components.
from (4.10) one can easily show that

d me ~3

e, = 9 e (u.lE)
* 2 x% b

which gives the transformation law of a natural basis under a
¢hange of local coordinates. From (4.14) and (4.15) we then
verify the consistency of (4.11), as we see that

1
- utg =ute,
A differentiable mapping
C: R>t— k(ﬁ) e X

of R to X is called a differentiable curve in X. Let toé R
and let p, = p(to). If fed, then fep is a differentiable

function on R. We can therefore define a mapping u ofﬂ) to
R by

WYL fope] (4.16)
dt £=£D

We see that u is linear and satisfles (4.3) for p = Pye It
is therefore a tangent vector to X at Py called the tangent
vector to the curve C at p. . Putting f = x% in (4.16) and
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using (4.5) gives

a
W= 4 x* (pey) (4.17)
dt P t=t,

which is the usual definition of g tangent vector to a curve
in terms of its components.

4.9. THE DRAGGING ALONG OF A VECTOR BY A DIFFERENTIABLE
MAPPING

Let (X, 8 ,D) ana (Y, 0, &) be two differentiable mani-
folds and let h be g differentiable mapplng of X into Y.
Then corresponding to a tangent vector U to X at pe X we can
define a tangent vector o to Y at h(p)e Y by

hu() = ®(g.h) (4.18)

for any ge$. This is easily shown to satisfy the axioms

for a tangent vector to € at h{p), and the mapping ﬁ'~éﬁﬁ is
a linear mapping of the tangent vector space to X at_g into
the tangent vector space to Y at h(p). We say that hu is
obtained from @ by dragging along by the differentiable map-
ping h.
If X and Y have the same dimension and h is a diffeo~

morphism, then corresponding to any fed we can define a
function hre ¢ by

hi = foh (1.19)

We say that hf is obtained from by dragging along by h.
In this case (4.18) can be written as -

he(hd) = @) fr fed.
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4,10. VECTOR FIELDS

Let T (X) denote the tangent vector space to the dif-
feventiable manifold (X, 8 ,D) at peX. A vector field T on
¥ is a correspondence that associates to every peX an element
2 of Tp(X). Then if fed, U(f) is a real-valued function

u

on X,

Xa}:———) Z:F(_JC) e R

In general this function will not be differentiable, i.e.
will not be ind. But if, for every fed, F(r)edD , then

the vector -field ? is said to be differentiable. The set of
511 differentiable vector fields on X will be denoted bylX.

Ir 3,'35:1:and a &R, we define F+7 and al as differentiable
vector fields on X by

3 g o d
@+3), = Uy + 7, (4.20)
@d), = WA (4.21)

for all ge X. With addition, and multiplication by a real
number, SO defined, X is an infinite~-dimensional vector space
over the real field R. We also define the Lie bracket or

commutator of 3, “eX by

1
AR S R e e e : .

@7 = 2F®) - TEE) 22

for all feD. We easily show that this satisfies the axioms

for a vector field (whereas u(V(f)) and F(A(r)) separately do
not), and furthermore, it is a differentiable vector fileld,
so that X is closed under the Lie bracket operation. With
this additional structure, X forms a Lie algebra over-the
peal field R. A Lie algebra is an algebra %defined in
section 2.1) in which the internal operation usually denoted

by [,] satisfies

1) [_71 = -[V,3].
(11) [2,0[3,717 + [F,[¥,01] + [(#,[2,92] = oO.

These are easily seen to be satisfied by the definition (h.22).
(ii) above is called the Jacobi identity.
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The set D of differentiable functions forms g ring
(defined in section 2.1) with respect to the operations of
addition ang ordinary multiplication of functions. If r¢ D

and UeX, we define 2 e X by

(ﬁ)f’ = ,C(,,)&’P ) peX . (423

Then X forms a module (defined in section 2.1) over the ring
D, with respect to the operations of addition defined by
(4.20) ang multiplication by fed s defined by (4.23),

Now let h be g diffeomorphism of X onto itself, and
let TeX. Then we can drag along b by h to form a vector

field hleXderined by

R k)= T (4. 28)

for all peXand all rel. Replacing hf by f ang h(p) by p,
50 that f and p become respectively h_lf and h'l(p), we get

71_7/,&) = 3,;:(,0 (W)

and by (4.19) this can be written as

E:, (£ = z[;’q,) (f’ L‘)

Ir R = 'J, the vector fieldq U is said to be invariant with
respect to h.

b1z, DIFFERENTIAL FORMS

Let Tp(X) be the tangent vector space at p to the dif-
ferentiable manifold X3p, and let T *(X) be the dual space
to Tp(X). The elements of Tp*(X) are called covectors or

differential forms at pP. A field w of covectors or differen—
tial forms on X is a correspondence :

Xop o wp e Tx)
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which associates with every element p of X a differential
form . at p. If w is a field of differential forms and

@ eT (X), then wp(ﬁ’p)e R. Hence if ¥ is a vector field on
X, w(@) is a real-valued function on X defined by

w(R)p) = w,,gifp) for pex.

17 w(de Dfor all ReX, w is said to De differentiable, and
is called a differentiable form field on Xx. Ifw,m are
differentiable form Fields on X and aé€ R, we define w+ T
and aw as differentiable form fields on X by

(w:fﬂ')‘,: wp + Ty, (4.25)

@Lw)f, = QW . (4.26)

With these definitions of addition and of multiplication by
o real number, the set of all differentiable form fields on
X forms an infinite—dimensional vector space over R.

Now take any fe D and define a mapping of Tp(X) to R

by
T,) 2 (Tl’ — TZP(,L) e R,

Then by (4.4) this is a linear mapping, and so it determines
a differential form at D, denoted by df. We then have

df (@) = @, (4 (4.27)

This mapping 1s defined for all D, and so df is in fact a
field of gifferential forms on X. Purther, if TeX, then

ar(d) = 'ﬁ(f)e‘b, and hence df is a differentiable form field
on X. So with every differentiable function £ on X there is
associated a differentiable form field 4f defined by (4.27).

ir f,ge D and TeX, then using (4.27), (4.3) can be
written in the form

d(59)(R) = §H ) + §dg@)
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and this holds for all vector fields ¥, so that

d(fg) = £ dg + 3,df (kh.28)

Now let peX and let{xa} be a system of local coordi-
nates around p. Let us use the notation of section 4,8,

Then since the x%ed, ir a'eTp(x) then (4.27) gives
dx™®) = Rx®)

= ut by G-5). (4.29)

But by (4.11),

&
#

=
®

and so
dx® (@)= ub dz® (%).
Comparing with (4.29) this gives
aQ
d.x“@’b) = Sb
_’
e

and so {dxa} is the dual basis orf the natural basis { a} as-

soclated with the local coordinates {xa}. If we write, as
is often done,as explained in section 4.8, 2/9xa for —éa’

then we have that:
{ax®}  is the basis qual to {o/0x%}.

So any differential form at p can be written .

W = w, dxt with Wy = w( €y
In particular take W= df, fed. Then

Wo= df (&) = e (4) = of by (4.12).

ox
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Hence

df = 28 dx*. (4.30)
ox*

Let h be a diffeomorphism of X and let W be a differen-
tiable form field onX. Then we define the differentiable
form field hw obtained from w by dragging along by h by

GO (hi)= oo, () (4.31)

for all pe X and all Te:[. This is easily seen to satisfy
all the axioms of a differentiable form field. For the
particular case of W = df, fed, it gives

hdf(hu)= df(®) = B

.
= hu (k}) from section 4.9

= dhf(ka).

—>
But hu is arbitrary, and hence

hdf = dhf .

4,12, TANGENT TENSORS AND TENSOR FIELDS
Let Tp(X) be the tangent vector space at pe X to the

T e A o
R . i R .

n-dimensional differentiable manifold X, and let Tp*(X) be

its dual space. Then 1f we drop the X in Tp(X) for simpli-

city, a tangent tensor to X at p of valence (k,4) is an
element of the tensor product

(6* ) & (& T,1).

%
.
5
§
7
=
S
:
.

A tensor field on X of valence (k,4 ) is a correspondence
that assigns to every point pe X a tangent tensor to X at p

of valence (k, 4
Let {xa} be a system of local coordinates around p.
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Then 1if {5;} is the natural basis at p of T associated

with these local coordinates, and {dxa} is the dual basis,
then any tangent tensor Sof valence (ky £) at p can be
written uniquely in the form

S:S“""a“h_.h —é’a_’®-~-®?% ® dx"s ... & dxk

a, ..a
the scalars S 1 kbl{J% are called the natural components

of § with respect to the ¢coordinates {xa}.

a,..a
IP S is a tensor field, the components § 1 K bl..%
are real-valued functions on that neighborhood y of p for
which the {xa} are local coordinates. If there exist n(k+£)

..ak

8.
functions r 1 by--.bye D such that

'...Q pee
Sk @ £

for all qel, § is saig to be differentiable on U. 1Ir every
point pe X is contained in g nelghborhood on which S is
differentiable, then § is saig to be a differentiable tensor
field. It is €easily seen that this definition agrees with
those given above of differentiable vector fields (k = 1,
L= 0) ang differentiable form fields (k = 0, L= 1),

If h is g diffeomorphism of X, the differentiable
tensor field h§ obtaineq from § by dragging along by h is
defined by

Q- Qg -1 - - b
hS= § bob, ° [ keal o...ahea_‘®kdxl" ®- ®hdx™

This is also easlly seen to agree with the above definitions
of dragging along of differentiabile vector and form fields.

4.13. GEOMETRIC OBJECTS

Let X be an n-dimensional differentiable manifold., A
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written

e (P>{X°‘}) —3 (u',u",--‘u”) e R™

|l
such that if also {xa } is another system of local coordinates
around p, and

2o (p i) - (Wt W) € R

then

A T L (4.32)

b
D b

4 definition of this type can clearly be given for tensors
of any valence. But since tensors are not sufficient for all
purposes in geometry and physics, for example scalar densi-
ties are not tensors, to avoid having to expand definitions
shd theorems whenever we need a new type of entity, it is
convenient to define a more general entity, the geometric
object, which includes nearly all the entities needed in
geometry and physics, so that definitions and theorems can
be given in terms of geometric objects so as to hold for all
the more specialized cases that we may require. .

Let peX be an arbitrary point of X and let {xa}, {xa}
bé two systems of local coordinates around p. A geometric
object'field y 1s a correspondence

yo (p{x3) = (YoY H) €RT

which associates with every point peX, and every system of

local coordinates {xa} around p, a set of N real numbers,
together with a rule which determines (yl,,...,yN,), given by

¥ (=) = (e )

in terms of the (yl,yz,...,yN) and the values of p of the
functions and their partial derivatives which relate the

1
coordinate systems {xa} and {xa} as in (4.1). The N numbers
(yl,...,yN) are called the components of y at p with respect

to the coordinates {xa}. When y is a one-component geometric
object, we write y and y' to denote its values corresponding

85




A. Trautman Chapter 4

1
to  {x%} ana {x%} respectively.

The particular type of geometric object is determined
by this rule. For example, for a vector this rule has the
form (4.32),

At first it may appear that this definition is so general
that there can be nothing of geometric significance which is
not a geometric object. However, this is not so. Both
parts of the definition may break down, e.g.:

(1) spinors are not geometric objects as components
of a spinor can only be associated with an ortho-
normal basis and not with the natural basis of g
general coordinate System, so that in this case
the correspondence does not exist.

(i1) Let u pe a differentiable vector field with com-
ponents u? with respect to the natural basis as-
socliated with the local coordinate system x2 .,
Then with p ang x2 We may associate the n2 num~

bers (Aua/axb)p. Under a change of coordinate
system these transform thus:

[ 4
T LY aut + bxdl rar €
2xb Ix® Pxd xd 2?3 3xd

This transformation law involves the components u® of the

original vector, and hence the n- numbers Bua/axb do not
form the components of g geometric object as the transforma-
tion law has an unallowed form. However, the ne + n numbers

( u o aul )
dxb

do form the components of g geometric object.

: If y 1s a geometric object, and h is g diffeomorphism
of X, then we define the geometric object hy obtained from
-y by dragging along by h by

if Yo (P {=*y) = (}I,a%z""%)
then "‘y (L‘U’)? {I’\xq})“" (Hu‘dn‘”‘}"v)

S0 that hy associates with h(p) and {hxa} the same numbers
as y associates with p ang {xa}. We write
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h%: (P,{xﬁ}) — (hyp.”. hyN)

so defining hyA’ A= 1,2,.. 5N

This definition is easily seen to be consisftent with
the particular case of a tensor field defined above.

4,14, ONE-PARAMETER GROUPS OF DIFFEOMORPHISMS

Let (X,8, D) be a differentiable manifold. A family
h., t€R, of mappings of X onto X is said to be a one-
t el
parameter group Gl of diffeomorphisms of X if

S e A B R

(1) For every t € R and peX, p—7ht(p) is a diffeomor-
phism of X onto X

(1i) The mapping

RxX 5 (t:p) = h(p) e X

of the product manifold RxX onto X is differen-
tiable

R A

(111) ht+s = ht ) hs for all t, s €R.

From (iii) we see that the h, form an abelian group under

the functional combination operation o, whose identity is ho
and such that the inverse of ht is h—t'

Through any point pe€ X we can define a differentiable
curve p(t) by ’

e

G

.

F(t) = k% p).

This curve is called the orbit of p generated by the group,
and the set of orbits of all the points of X forms the
trajectories of the Gl‘ We see that from (iii) there is
exactly one trajectory through each point of X.

The tangent vector field U to the trajectories of the
group 1s defined by

e

(4.33)

t=0
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It is a differentiable vector field and is called the vector
field induced by the Gl'

One may pose the inverse problem, namely given a

differentiable vector field § on X, is there a one~parameter
group Gl of diffeomorphisms which induces TB? The answer is

that in general such a Gl will not exist, but instead there

will exdst a local one-parameter group of diffeomorphisms
which induces ®. A local Gl means that ht will not every-

where be defined for all t; instead, for any p€ X there is a
neighborhood U of p, a number £ 0 and a family {ht’ lt}<£}
of mappings of X into X such that
(1) ht is a diffeomorphism of U onto ht(u) for any t
for which |[t]¢¢

(i1) the mapping (t,p) — ht(p) of the product manifold
IxU into X is differentiable, where I is the in-
terval (-¢, +¢£ ) of the real line,

(111) if |t|, s} and [t+s|/<£ and qeU, then

ht° L‘s = L‘us
The existence of such a local G1 follows from the theory of

ordinary differential equations. Let {xa} be local coordi-
nates around peX. Then if a local Gl exists which induces

: ?, and we define

JOLANNE)

and let éa(t) be the local coordinates of p(t), then by

putting x% for f in (4.33), 1t can be written in the form

dé® - ut(4®)
dt
where ua(¢b) denotes the natural components of U at p(t)

with respect to the local coordinates {Xa}. ~ The existence
of the local Gl’ called the local Gl generated by'ﬁ, can then

be shown to follow from the existence theorem on solutions of
systems of ordinary first-order differential equations.
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§.15. LIE DERIVATIVES

Let @ be a differentiable vector field on a differen-

tiable manifeold X, and let ht be the local one-parameter

group of diffeomorphisms of X generated by q. If s is a
differentiable tensor field on X, we define the Lie deriva-

tive of s with respect to H, written % s, by

£5 Aé* "f.(.‘tS ' I, 3k
5 i R (k.34)

and it is a tensor of the same valence as s.
If y is a geometric object field on X with components

Yo then the Lie derivative of y 1s a geometric object field

on X with the same number of components as y, defined by

=0

(fi;qj);\ = 7 %kt% .

but it is not necessarily of the same type as y. For example,
the Lie derivative of an affine connection (deflned below)
is a tensor. )

We leave it as an exercise to show that for a scalar

field fe D and a vector field ¥ ¢ X

4= 2@
"8

and
£ - [€.7%],

I, 16. AFFINE CONNECTIONS ON A DIFFERENTIABLE MANIFOLD

Let (X,6,D) be an n-dimensional differentiable mani-

fold.  An affine connection ab a point peX is a mapping
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TP(,X) x X 3 (B,v)> k- VT e T#O()

of the Cartesian product TD(X)XI. into the tangent vector
space Tp(X) at p, which satisfies

(1) Linearity in both arguments with respect to addi-

tion and multiplication by a real number, i.e. if

e s | - -
UysUp,u €T (X)), vy,v,,VeX, a,b€R, then

@W, + bW, )-VF = a(B-V?) + b(Z-V3)
K- V(0% +bR)= (R V) + b (&-V7,)
(i1) Irf ueT (X), VeXand fed, then

-

VIV = R VY + R

o

An affine connection on X is said to be given if an
affine connection is given at every point of X. Then if V¥

is an affine connection on X and ﬁ),-\—;ex, 2-vv is a vector
field on X defined by

-
(Kv;‘?): uVTf {YOT ,)EX
b
This affine connection is said to be differentiable if

X-V7eX for all 1,%eX.

Now consider fixed pe X and fixed veX. Then the map-

ping

T 2 &> RV% ¢ 7,00

is linear, and hence it defines, as explained in section 2.7,
a tensor of valence (1,1), an element of Tp*(X)GJ Tp(X),
denoted by (V\‘/’)‘,. This tensor i1s called the covariant .
derivative of ?/) at peX. It is defined at all peX , and
hence V\?’ is a tensor field on X. If the affine connection
is differentiable, we see that \7? is a differentiable
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tensor field.
Now let 5;, a=1,2,...,n be n differentiable vector

fields on X such that {5;} forms a basis of Tq(X) for q in

some neighborhood U of p. Then the numbers [;g defined on U
by

~3 [
e Ve = [ € (4.35)

are called the components (or coefficients) of the affine
connection in U with respect to the basis {e

Let U, Ve X and let

- —
"e v o=

-
U= u , N

in U. Then from the axioms for the affine connection we have

YT = wte - V(vhE,)
= e, ('arb)e + utvhe, - v

e e h)+ I::’vc} by (4.35),

Write
Vowbdt e (v 2" (4.36)
Then
E:-§75? - ut éz . §7a qrb

and hence we see that the numbers VaV are the components of

the covariant derivative of V’w1th respect to the basis {e
If the {e } form the natural basis associated with the

local coordinate systen {x } in U, then (4.12) enables us to

re-write (4.36) as

_ ot boe (4.37)
= 25 “+ f:c v




A, Trautman Chapter 4

which 1s the usual definition of the covariant derivative
in terms of 1ts components.

If wis a differentiable form field on X, then we de-
find the covariant derlvatlve Vwof W at p as a tensor of

valence (0,2) such that if u,v E-TD(X) then
Vw(R,V) % R(w@) - w(d viF).

The components Vﬁ)b of wa1th respect to the basis{e i are
then given by

— [
vo.wl, = & Cwb) - E[, @e

=
where W _ = w(ea), or if the {?a} form the natural basis
assoclated with the local coordinate system {xa}, thus

Vw= 2@ _[¢w, 4.38
&b axa b\-b [4 ( )

Covariant differentiation can now easily be extended to
a general tensor field. Let s be a differentiable tensor

field of valence (k,4 ). Then ifr T € 'I‘ (X), the arffine

connectlon at p applied to s, written u -V¥s, is defined to
be a tensor at p of valence (k, ) such that

(i) it is linear in T, i.e. if a,be R, U,veT (X),
then P

(@ +b%)- V8= a (X-Vs)+ b(PVs)

(i1) it is linear in s, i.e. if s,t are differentiable
tensor fields of valence (k,{) and Q,b€ R, then

- Y
w-V{as+bt) = ak-Vs + bVt
(1ii1) 1t obeys the Leibnitz rule with respect to tensor

products, i.e. 1if s,t are differentiable tensor
fields, not necessarily of the same valence, then

R-V(sot) =(R-Vs)®t + s® (@-vt)
(iv) if re ], we define
L Vs W),
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Since any tensor can be expressed as the sum of tensor pro-
ducts of vectors and differentlal forms, we see that these

axioms completely determine T-Vs rfor any tensor s. Since

for fixed s this 1s linear in W, it defines a tensor of

valence (k, £+1), called the covariant derivative of s at p,

denoted by V s.
Ir

R>st ——-)}p(_t)e)(

is a differentiable curve C in X, and 3 is its tangent vec-
gor field defined by (4.16), then if Te X we define the
absolute derivative of'? along the curve, written DV/dt, by

DV & p.y¥
dt
It D§7dt = 0 along C, we say that Y is parallel along C, and

the value of v at one point on C determines the value at any
other point on C by parallel transport. If C is such that

Dﬁth = 0, C is sald to be geodesic and ¢t is called an affine
parameter on ¢, If we change to a new parameter 2, A= A(t)
being a monotonic differentiable function of t, the equation
of the geodesic will take the form

X - fi
dA

for some function f£(A). A will also be an affine parameter,
i.e. f(A) = 0, if and only if A= at + b, a,b numbers,

a$ 0. If {xa} is a system of local coordinates, the geodesic
equations may be written in the form

o
gzt [% dxb dat oo (4.39)
At be dt dt
obtained by using (4.37) and remembering that if u® are the
natural components of 3, u? = dxa/dt.

93




A, Trautman Chapter 4

L,17. THE TORSION TENSOR
Let X by a differentiable manifold provided with an
affine connection V . This affine connection is said to be
s . - =
symmetric if, for every u,veX,

TV -TVE = [1,7]. (4.40)

Ir {é;} is the natural basis assoclated with the local co-
ordinate system {xa}, then

)
[&.8]=2°
and by (4.35), (4.40) becomes

Cc c
, bl
[ - rs (4.41)

ab o

which is the origin of the name 'symmetric' for this proper-
ty. Note, however, that (4.41) only holds for a natural
basis, not for a general basis.

If V is a non- symmetric affine connection, we may de—
fine from 1t another affine connection §¥' by

E.V'q_;’(:"f #(RV? -+ ?Vf.,_[ifﬁ?]).

This is easily verified to satisfy the axioms of an affine

connection, and it 1s symmetric. It is called the symmetric
7

part of V. 1If rég are the natural components of V' with

respect to the local coordinates {xa}, then we see that
/e~c¢ ¢ c
= L
rf;la 2(I:b +r;>a')'

From (4.39) we then see that the geodesics of both V andV!
are the same, as the equation of a geodesic only involves the
symmetric part of the affine connection.

We can also define from V a tensor field S of valence
(1,2) oy

—

xxx > (LA » S(ELF)= £ (FVF-F.V2 -[%,7])
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This is easily seen to satisfy the axioms of a tensor field,
i.e., 1t 1s linear in both arguments wlth respect to addition
and multiplication by a real-valued function on X. In terms
of natural components, if we write

S((—L’,’T)—!) = SC u,a ’U’bgc

then
¢

Sab = é_(I;; "[;Z )'

S is called the torsion tensor of the affine connection, and
its vanishing is the conditlion for the affine connection to
be symmetric.

4, 18. THE CURVATURE TENSOR

Let X be a differentiable manifold provided with a

differentiable affine connectionV, and let _ﬁ,_\;,'ﬁ €¢X. Define
the mapping

XxXxX » (K,FW) - R(&’,?,W)
= W V(FIR) = V-V (- V) +(T- vw)-vil -(0-v%)-vid eX

Then one can easily show that this mapping is linear in each
argument vector with respect to addition and mul@;pgigaggon
by a differentiable function, i.e. if f, g€ and T,0,V,W eX(,
then

RGE+ 4%, 7,7 ) = fREFT) + g R(E H3H)

7

and similarly for the other two arguments. It therefore
determines a differentiable tensor field R of wvalence (1,3),
called the Riemann-Christoffel tensor field, er the curvature
tensor field, of the affine connection. If {ea} is a basis

of T (X) and ua, va, w? are the components of W, V. ,'W
p p p p
respectively with respect to this basis, then we write
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and the R%eca are the components of the curvature tensor.

Ir r;g are the componenfs of the affine connection and {5;}
is the natural basis associated with the local coordinate
system {Xa} around p, then

a a [ a e a e
R bed = ad rc], - ac ro‘(b + [;Q rc,L - Ce I:([, (4. 42)

where

Ba = b/bx"'

It can be shown that in any neighborhood U there exists
a local coordinate system for which the natural components

of the affine connection vanish, rég = 0, if and only if
R%ed = 0 in U.

4,19: METRIC TENSOR FIELDS. RIEMANNIAN GEOMETRY

The differentiable manifold X is said to be provided
with a metric tensor field g if a scalar product

T xT,(X) 5 @)~ &%= g(&%) e R

is defined in the tangent space at every point p€X. g is a
tensor field of valence (0, 2) and it is sald to be dlfferen—

tiable if g(@,¥)e D whenever 1,Ve X

An affine connection V’on X is called metric if for any
differentiable curve t—» p(t) in X and any vector field v
which 1s parallel along this curve.

d o(,7
. 9(%.7)
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i.e. if parallel vector fields along a curve have constant
length. It can easily be shown that given a non-singular
differentiable metric tensor field on a differentiable
manifold X, there exists exactly one symmetric, metric, affine
connection on X, and that in natural components with respect

to a local coordinate system {xa}, it is given by

a 4
rp,c = 'i‘ 3a (ab Jea * % J0a % 3bc) (4.43)

where the gad are the components of the contravariant metric
tensor,

ad a
3 3ba = Sb

as in section 2.12.

A differentiable manifold provided with a non-singular
differentiable metric tensor field and a symmetric, metric,
affine connection is called a Riemannian space, and the
above theorem is known as the Fundamental Theorem of Rieman-
nian Geometry.

An isometry or a motion of a Riemannian space is a
diffeomorphism h of X such that for every pe X and every

pair of vectors ﬁ;? € Tp(X),

ht- hov= &7 (h.4h)

i.e. scalar products of vectors are unchanged when the vec-
tors are dragged along by h. From the definition of dragging
along we have

w7 = 3(?,17) = fng (R, =)

-
.

and hence with (4.44) this gives
3(»?:, W)= hgm,m)

—y

Sinece this must hold for all'ﬁ,v we have as the condition for

an isometry
- (L&.Ll55
LL3 =9
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i.e. the metric must be invariant under drégging along by h.
ir ht, t€ R, is a one-parameter group of isometries, then

(4. 45) gives, with (4.34),

3 =0 (4.46)

= (2

where U is the vector field induced by the group. Equation
(4.46) is known as Killing's equation, and in terms of com-
ponents it takes the form

é ?“ z Viuw, +V,u, =0

where ua = gabub and ub are the components of

o

4,20. INTEGRATION IN A DIFFERENTIABLE MANIFOLD

Let (X, 8, D) be an n-dimensional differentiable mani-
fold and let E be a geometric object field defined on X with
one component,

E: (b, {x“})-—a E(x*) eR.

Let U€e B be an open set of X on which two local coordinate
1

systems {Xa3 and {Xa4} are defined. Then these coordinate

systems map U into open sets of Rn, say x(U), x'(U) respec-~

1
tively, and E(xa), E'(x® ) are real-valued functions which
may be considered as defined on x(U), x'(U) respectively.
We may therefore form the integrals

J

x(n)

Now 1if J 1s the Jacobian of the coordinate transformation
1
rrom {x*3 to x%1,

e, | EFat)dh o

'y

T = det 2%
2 xb
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then
| [ e dx= [ BT,

X x(u)

So the two integrals in (4.47) are equal for all possible
choices of U if and only if

N
E(x*) = E'(x*)]|7T] (L.48)
From section 2.10 we see that such a geometric object is a
pseudoscalar density. In this case, since J E(x?)d%x
x(u)

igs independent of the local coordinate system chosen in U,
we may consistently call it the integral of E over U.

Now let Y be any subset of X. Then we can subdivide
it into subsets of X each of which can be covered by a single
local coordinate system. Then the integral of B over each
subset can be defined as above, and the integral of E over Y
ig defined to be the sum of the integrals over these sub-
sets of Y.

We have thus shown how to integrate a pseudoscalar den-
sity field over an arbitrary region of a differentiable
manifold by reducing it to integration over a Euclidean space,
which we know how to do.

The region Y of X is sald to be oriented if

(i) the tangent space at each point of Y has an
orientation, and

(ii) if {xa} is a loeal coordinate system in UCY,
then the corresponding natural bases of the tan-
gent spaces at the points of U all have the same
orientation. We then may call this orientation
the orientation of the local coordinates {x2}.

Since the Jacobian connecting two local coordinate systems

of the same orientation is positive, 1f we restrict ourselves
to local coordinate systems with positive orientation, (4.48)
becomes

——

E(x?) = E'(x*) 7

which is satisfied by scalar densitles also. Now, proceeding
as before, we see that one can define the integral of a scalar
density over an oriented region of a differentiable manifold.
We should note, however, that it is not always possible to
provide a manifold globally with an orientation.
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Finally, we show that .a fileld of differential n-forms
can be integrated over an oriented region of an n-dimensional
differentiable manifold. For 1f A is a fleld of differential

n~forms and {xa} a local coordinate system in U< X, then with
A we can assoclate a one-component geometric object E by

E: CP’ {x“}) - E (x*)
A= E(x*) dx'Adx*A---adx™

Using the results of section 2.8 we easily see that E is a
scalar density, and the integral of A over any region is de-
fined to be the integral of E over that region as defined
above.

The exposition of elements of differential geometry
given in this chapter follows rather closely that of

K. Nomizu, Lie Groups and Differential Geometry, Publ.
Math. Soc, Japan, No. 2, 1956.
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5, THEORIES OF SPACE, TIME AND GRAVITATION

5,1. SPACE-TIME AS A DIFFERENTIABLE MANIFOLD

The most fundamental principle of physics, common to
all physical theories so far put forward, is that space and
time can be represented by a 4-3dimensional differentiable
manifold. This isoften considered as so obvious that it is
hardly worth mentioning or analyzing, but we consider it to
be worthy of some attention, as did Einstein who, in his ex-
position of the theory of relativity, devoted considerable
attention to the problem: why do we consider space and time
to be a continuum (by which he meant what is nowadays called
a differentiable manifold)?

1f one lgnores quantum phenomena, including the atom-
ie¢ structure of matter, and assumes matter to be infinitely

. visible so that there is no inherent iower 1imit on the ex~—
tension of bodies, we shall show that it 1is plausible that a
differentiable manifold is an appropriate model of space~time.
One can imagine that there is in space a very large number of
very small ¢locks, 1.e. small bodies with a mechanism that
can be used to indicate time. They need not be 'good' clocks
in any sense of the word 'good.' All that is required is that
they assoclabe a number with every instant of time, and that
two instants of time are never given the same number by the
same clock. Further, each clock has three identification
numbers engraved on it, such that no two clocks bear the

same three numbers. The fact that three numbers are both
necessary and sufficient to distinguish the clocks is the
meaning of space belng 3~dimensional, and 1s to be taken as
an experimental fact. Time is only one-dimensional, as the
clocks need indicate only one number completely to specify

an instant of time. Together, we see that we need 4 numbers
to specify a point in space and time, and so space—-time 1s
lidimensional.

. If the identification numbers and the time readings are
such that the neighboring clocks in space bear numbers dif-
fering very little from one another and indicate times dif-
fering very. little, then they can be considered as defining
a4 coordinate system in a differentiable manifold representa-
tion of space-time. Such a coordinate system can be used to
analyze all physical phenomena in terms of coincidences of
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events with these clocks. For example, the motion of g
particle may be described by saying that the particle coin-
cldes with clock (1,3,-5) at time 6 by that clock, with
clock (2,3,-6) at time 7 by that clock, with elock (3,3,-6)
at time «ve, Filling in as many events along the path of
the clock as is desired. But to carry through this procedure
it must be possible to associate clocks with as many points
of space as one desires, which requires that we be able to
make the clocks arbitrarily small, or we would not be able
to find room for them at all; and furthermore it must be
possible to read the dial of each clock with arbitrarily
high accuracy. Perhaps we should point out that such a
system of clocks has nothing to do with the metrical proper-
ties orf Space~time; it is necessary in order for space and
time to be considered eéven as a differentiable manifold.

dimensions are smaller than, say, 10-13 on. Moreover, such
small clocks would be subject to quantum laws, so that irf
one knows with great accuracy where one such clock is at g
given instant of time, at a later time its position will be
very indeterminate. Even worse, such elementary clocks are,
by quantum brinciples, indistinguishable, S0 we can neither
engrave them with numbers to identify one from another, nor
provide them with dials to indicate the time, ete! 1In fact,
they would be completely useless for our purposes. This
shows that one really has to use macroscopic clocks, composed
of very large numbers of atoms, and then we cannot pack
enough such clocks together to form a very useful coordinate
system. And if it ig not possible to construct, even in
principle, a coordinate system 1in Space and time, does it
make sense to assume that space and time can be represented
by a differentiable manifold? The question seems to be
open, but one should not assume 1t as obvious that it is so.

assumptions about the structure of space and time, but up to
now, Nno such attempt has met with much success. The first

Symmetry transformation corresponding to a Lorents transfor-
mation with very small velocity. A recent discussion contain-
ing arguments against the continuity of space and time is

given by Bohm.
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It has been said that the modern approaches to elemen-
tapy particle theory based on S-matrix theory and related
theories--such as dispersion relation theories--are not based
on the assumption of a space-time continuum. But actually
this statement is unfounded, as they require invariance under
the inhomogeneous Lorentz group, from which we can construct
the usual Minkowski space-time of special relativity.

From now on we shall always assume that space-time can
be represented by a 4-dimensional differentiable manifold.
This is why the differentiable manifold concept was defined
with care and discussed in detaill in the preceding chapter.
Any changes in this assumption would result in a very profound
revolution in physics.

5.2. THE AFFINE CONNECTION IN PHYSICS

There is another fundamental principle of physics that
is common to all physical theories so far put forward. This
is that the differentiable manifold of space and time is
endowed with an affine connection whose geodesics form a
privileged set of world-lines in space~time. The particular
affine connection depends on the theory under consideration
and may also depend on the particular solution of the theory
we are considering, but the existence of an affine connection
is common to all theories. It is necessary in order that the
fundamental laws of physics can be expressed in the form of
differential equations, which is certainly true of all physi-
cal theories.

Since one must be able to determine by physical experi-
ment every mathematical construct introduced in a physical
theory, we must look for a method of physically determining
the affine connection. The symmetric part of an affine
connection is determined when the totality of geodesics in
the manifold is known. Not every famlily of curves in a dif-
ferentiable manifold can be interpreted as the geodesics of
an affine connection, so we must look for a privileged set
of world-lines in space-time which can be so interpreted.

Of course, this is not the only way of determining physically
the symmetric part of the affine connection, but it is the
most natural way. If a theory postulates a non-symmetric
affine connection, the antisymmetric part, i.e. the torsion
tensor, must be separately determined.

30 we see that the first question we should ask of a
physical theory is: What physically determined privileged
class of world-lines is to be interpreted as the totality of
geodesics of the affine connection of the space-time manifold?
To this question each theory gives 1ts own answer, and to
proceed further we must speclalize to a particular theory.
This we shall now do.
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5.3.° NEWTONIAN MECHANICS IN THE ABSENCE OF GRAVITATION

The privileged class of world~lines in Newtonian
mechanics in the absence of gravitation is provided by
Newton's First Law of Motion. This law is sometimes said
to be trivial and to follow from the Second Law, but we shall
See that it is in rfact ornne of the most important 1laws of
physics. Before considering it further, however, we should
first briefly discuss the concept of gbsolute tlme which liesg
at the very foundations of Newtonian physics.

In the language or differentiable manifolds, irf X, e,41
is the space-time manifold, then an absolute time is a regl-

valued function tedr with the following mathematical proper-
ties

(1) it is determined up to a line
t— at+p, a,be R, a>0
(i1) +the Subspaces t = const are 3~dimensional mani-
folds, homeomorphic to RS.

(1ii) through each point of X passes exactly one such
subspace.

ar transformation

It is also assumed that there exists a family of ideal clocks
which measure t, i.e. which indicate, s5ay by means of g

pointer on a dial, the value of ¢t at the point in space-~time

at which the clock is, regardless of the motion which the
clock has undergone in

was correctly set at some time in the
physical meaning of absolute time.
to specify how these ideal clocks ma
structed.

We are now i
of Motion. It may

past. This is the
It is up to the theory
¥y in principle be con-

n a position to state Newton's First Law
conveniently be formulated in two parts:

(1) In the absence of gravitation there exists a
privileged class of motions of bodies, called

free motions, followed by bodies not acted on by
any force,

(11) There exlsts a global coordinate system {xaf 5
a = 1,2,3,4, with x4

= t, an absolute time, in
which free motions ar

e characterized by

<£2§<=O == 1,2,3 (5.1)
dt?
From this we get
dx* - o =1,2,3,%
dt?
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for free motions, which shows that the trajectories of free
motions may be considered as the geodesics of an affine con-
nection whose components vanish in this particular coordinate
system. Consequently the curvature tensor of the affine con-
nection vanishes. Such an affine connection is called inte-
grable. The coordinate systems specified in (ii) above are
called inertial. They are characterized by the vanishing of
the components of the affine connection with respect to them,
and are so determined up to an arbitrary linear transforma-

tion of the x% which leaves x an absolute time, i.e. trans-
formations of the form

x"s A“,e xf+ b+ d" g

Tt at +k (5.2)

where Agﬁ, a, b, &, d* are real constants, az 0 and the

matrix A% non-singular.
8

5.4. NEWTONIAN MECHANICS IN THE PRESENCE OF GRAVITATION

In the presence of gravitation, Newton's First Law of
Motion cannot be postulated in the above form as there can
be no completely free motions, i.e. there can be no bodies
not acted on by any force whatsoever, since gravitation is a
force with infinite range which cannot be shielded by any
known means. We are therefore forced to seek a new privileged
class of motions. The best we can do is to take for this
privileged class the free falls, i.e. the trajectories of
bodies acted on only by a gravitational force. The modified
formulation of the First Law then takes the form:

(1) There exists a privileged class of motions of
bodies, called free falls, followed by bodies
acted on only by a gravitational force.

(i1) There exists a global coordinate system {Xa},
a=1,2,3,4, and a real-valued function¢e£¥, such
that free falls are characterized by

by
Is —2¢ , «=12,3. (5.3)
dgr 9

The trajectories of free falls can now be taken as the

geodesics of an affine connectlion on the space-time manifold,
but now the affine connection will have a non-vanishing
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curvature tensor. We shall study this in more detail below.

We note that (5.3) is invariant under a largr group of
transformations than (5.2). 1In fact, 1t is easy to show that
the most general transformation leaving the form of (5.3)
invariant consists of the composition of a rotation with a
transformation of the form

o X+ Q)
3 DY
— 5.4
?ﬁe ?{ iél iﬁ;; x ( )

where the real-valued function a®™(t) are arbitrary. As a
consequence of this extension of the invariance group, the
motion of an inertial reference frame is not as well defined
in the presence of gravitation as it is in its absence. In
the case of an isolated system of bodies we can return to

the group (5.2) and so completely recover the usual concept
of an inertigl frame, by imposing the additional condltion
that ¢ should tend to zero at large distances from the sSys-—
tem. However, in practice we cannot have an isolated system;
the distant matter in the universe is always present and
there is nothing we can do about it. We shall see in Chapter
9 that this weakening of the concept of an inertial frame has
importance in the formulation of Newtonian cosmology. It

is interesting to note that this weakening of the concept of
inertial frames in the presence of gravitation occurs in
Newtonian physics, and is not peculiar to general relativity,
as i1s commonly supposed.

One could now determine from (5.3) the affine connec-
tion implied by interpreting the trajectories of free falls
as geodeslcs, and from this one could build up the whole
geometric structure of Newtonian gravitation theory. We
shall not follow this approach, however, and instead we shall
propose a set of geometric axioms and shall show that they
lead to the familiar form of Newtonian gravitation theory.

5.5. AXIOMATIC FORMULATION OF THE GEOMETRY OF. NEWTONIAN
GRAVITATION THEORY

We suppose that Space-time can be represented by a dif-

ferentiable manirfold {x,6 ,&ﬁl homeomorphic to R” and endowed
with

(1) A symmetric affine connection with components VL?.

(11) A symmetric tensor fleld g of valence (2,0).
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(1ii) A real-valued function tedJ,

These structures are to satisfy a certain set of axioms.

Let {x2} be a global coordinate system. Let r”bi, R%ecd,

gab be the corresponding natural components of the affine

connection, its curvature tensor, and the tensor field g,

and let ta dif at/axa. Then the axioms are:

I. R® cab = 0. This is equivalent to the existence of a
covariant constant scalar density W, vaw = 0, which
can be used to define a unit of volume throughout the
manifold (c.f. Schouten,2 p. 155), or equivalently, a

covariant constant d-vector fade = f[ade].

a =
IT. t[eR bled .

def’ ,CCRAeq,

III. R%% = rR°a®v, where R%*°a
V. chab
V. The rank of the matrix gab is 3, gabtb = 0, and the
quadratic form gabx x, is positive semi-definite.

0.

i

a’b
VI. In vacuo the gravitational field equations are Rab =0,
where Rab = R%abe 1s the Ricei tensor of the affine
connection.

VII. Free falls follow the geodesics of Pbi‘

We shall now derive some consequences of these axioms.

From V, gabtb = 0, and covariantly differentiating this and

using IV gives
b
3“‘ vc.tl,—: O
from which V gives the existence of a vector Sa such ‘that

Y lo =Sty (5.5)

But the connection is symmetric, and so

ViaTel = 33yt = O
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which with (5.5) gives
Sta.ty= O sothal  Sa=Tt, (5.6)

for some scalar function T. Putting this back in (5.5) gives

vutb: rT‘to.tb (5.7)
Now II implies the existence of a tensor Racd such
that
Rped =t R%cd (5.8)
Hence
d ol _ R‘l '( )
TR ap = tat R =L Rab=0 by 1 5.9

But we have, by the Ricci identity,
_ Rd
2V Vit = 4 cab
and so from (5.9)
VLCL Vb] tc: O
Substituting (5.7) into this gives
3T 3gt=0

so that », T and 3,t are everywhere parallel. The surfaces
T = const. and t = const. must therefore coincide, and so
T must be a function of t only. So

T="Te) (5.10)

) Now none of the axioms would be affected if t were
replaced by a differentiable function f(t), df/dt % 0. If
we write T = f£(t), then
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Valo= §'tote +§'Vaty

where’€a = 3T/5x® and ' denotes d/dt. Using (5.7) and (5.10)
this gives

GWie= (5"+ T@F Itaty
Now choose f so that
s+ Twms' =0

This can always be done. Then we get Vé@b = 0. Since ©

satisfies the axioms for t, we see that without loss of
generality we can always assume

Ve t,=0. (5.11)

From now on we shall assume t to be so chosen. Then t is
determined up to a linear transformation t - at+b, a,be R,
a## 0.

Now let x% = x%(t) be a geodesic in X, with t not
necessarlily assumed to be an affine parameter. Then from
section 4.16

D dx® = Ao dx
dt dt 4t (5.12)

for some scalar function A(t). Now

tqg}_xq = _B_T_- d_x?': \
dt axtdt

So multiplying (5.12) by ta and using (5.11) gives

A=%D dx* = D, dx*)= ©
dt dt dt dt /
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Hence we see that in fact t is an affine parameter on all
geodesics in X.
Let us now return to (5.8). We know that

thbcd]: <
for the curvature tensor of any symmetric connection, and so
t[beldJ::<3
which implies the existence of a tensor;iac such that
Rcd= 26 ctas (5.13)
and ¢ac is determined up to a transformation
Eh g+ s (5.14)

for any vector rfield S%. <o now we have reduced Rabcd to
the form

qucd:ltb¢q@-_td]. (5.15)

To proceed further, we shall state without proof that
from (5.8) it can be shown that there exist three linearly
independent covariant constant vector fields §2, where

K=1,2,3 1s a label for the three fields, all lying in
surfaces t = const., so that '

T, =0, V¢§b= o (5.16)

and by applying the Bianchi identity to (5.15) it can be

shown that the $% in (5.14) can be chosen to make ¢ab take
the form

$%e= Vg™, Fr.=0 (5.17)

This vector fieldsﬁa is so determined up to a transformation
of the form
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<
g g7 WDET (5.18)

where the three scalar functions %(t) of t are arbiltrary.
Now define a new affine connection in the manifold,

with components °r;2, by
[+] -8 Q
M= Mo ¢ bebe (5.19)

Then using (5.15) and (5.17) it is easy to show that °R%becd,
the curvature tensor of this new connection, vanishes identi-

cally, so that the connectlon °r%i is integrable. The geo—

desic equation

QE§L+-rﬂlchgP dx* = o
dt* dr dt

which is, by VII, the equation of the trajectory of a free
fall, can now Dy (5.19) be written as

édfx,: +°F';c<;jj;§ %gg‘:_ ~ g% (5.20)
T T d%

As stated in section 4.18, since °r%i is integrable, there
1
exists a coordinate system {xa E which may be called 'iner-

t
tial,' in which r;‘i, = 0, and then (5.20) becomes
P = - 56“'
dt?

1
We interpret _¢a as the gravitational force on the body in
free fall. The terms involving °r%i in (5.20), present when

a general coordinate system is used, are then interpreted as
the inertial forces, 1.e. centrifugal, Coriolis forces, ete.,

and again _¢a is identified as the gravitational force.
It is important to note that, because of the possibility
of making a transformation of the form (5.18), nelther the

gravitational fieldqﬂa nor the 'inertial' affine connection
°r%i are determined uniquely by the geometry of Newtonian

space-time. These concepts may be uniquely defined only by
a global assumption, e.g. that at large dlstances from an
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isolated system orf bodies the fieldgﬁa tends to zero.
was pointed out in the previous section,
cannot always be made, and so we again arrive at the lack of
determinacy of inertial reference frames caused by the pre-
sence of gravitation. Note that the combineg inertial andg
gravitational fields, represented by the original affine

connection F%?, is uniquely defined and can be determined by

local experiments on freely falling test particles. The
splitting of this field into an inertial and a gravitational
part is only a convenience; it is not necessary for the meagn<
ingful interpretation of the theory, and we have made it
here in order to establish the connection with the usual
formulation of the Newtonian theory of gravitation.

So far, we have not considered the field equations

satisfieq by¢ a, Now substituting (5.15) into III gives, on
using Vv,

As
this assumption

ot = g%g.. (5.21)

Remembering that g 8 = Vg¢a, (

5.21) is the integrability
condition for the equation

Bh= g3, ¢ (5.22)

50 that III gives the existence

of a scalar gravitational
potential$ . But on using (5.15

» VI gives

=2t P o tqq
= ttaVagf® by (5:17) and (5.11)
= 14 § %Y ¢ by(5.22)and TV,

So the field equation satisfied by the potentia] ¢ is

3“bVQVb¢: o . (5.23)

Now let éildenote covariant differentiatio

n with respect
to the 'inertial! affine connection °r%?.

Then by (5.19)
Vi%¢= V.V @ - oty @© chﬁs‘
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mul?iplying this by gab and using V gives
A S AL (5.24)
so that the field equations (5.23) can be written as
AT EEE (5.25)

We have now obtained the complete set of equations of
particle motion (5.20) and empty space field equations (5.22)
and (5.25). These are suggestively like the usual equations
of Newtonlan gravitation theory, but we have not yet shown
that they are exactly equivalent. This is our next task,
and to do it we set up a special coordinate system. We
first note that, by (5.19),

%atb = Vatb+tatb¢ctc
= o by (5.11) and (5.17). (5.26)

and
A 3“: Ya 3'°°-tq(¢btd 9 “+ ¢ty 3"‘4)

= C py IV and V. (5.27)

But, as we have shown above, there exists a special coordinate
system {xa} in which OYB,iz = 0, and in this coordinate
system the covariant differentiation 6; reduces to partial
differentiation », . Equations (5.26) and (5.27) then tell

1 !
us that the components ta" ga b are constants, il.e. inde-
pendent of position. Since ta' = Ba,t, t must be a linear
1 1 .
function of the x% , and since the condition OQ,&;, =0

is unaffected by a linear coordinate transformation, the

1
coordinates {xa_S may be chosen so that

t = x*, (5.28)
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I
To=9%« . (5.29)
V then gives
4 1 1
(1) g2 4r gu a 0
t t
(11)  the 3 x 3 matrix g™ 7, «',5" = 1,2,3, is non-

singular.

1 1
Since by V, the quadratic form ga b X

yX,y 1s positive semi-
. . «'g! al’b
definite, the quadratic form g X

B(,xg, must be positive
definite. It is therefore possible,

Py a linear transforma-
1 1
tion of the coordinates xl N x2

R x3' (which leaves (5.28)

t 1
unaffected), to reduce the constant matrix gq A to the unit
matrix.

S0 we have now shown that coordinates {xa} may be
found such that

[S
r1lcac__':o)
ta= 6%,
o oo :
o /O i 0 o (5.30)
g loo 1 o]~
\oo oo
In these ccordinates (5.20), (5.22), and (5.25) give
dX -3, x=1,1.3
2 K
ot X (5.31)
AFH=0

where A 1s the usual Laplacian operator

A¥ P 4 :

+_ A
(ox) QX Coxd)

.

These are precisely the usual form of the equations of New-
tonian gravitation theory, and our identification of the
geometric formulation with the standard formulation is
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complete. If we wish to include the source terms due to
matter in the gravitational field equations, we simply re-
place VI by

Rap= 4T Rett,
so that instead of (5.23) we get
LT f= ke
which leads to Polsson's eqguation
A¢v: Hre

as required. Here p is the mass density and k is the
Newtonian constant of gravitation.

5.6, THE INTERPRETATION OF gab.

COORDINATE SYSTEMS

PRIVILEGED CLASSES OF

The tensor gab, which cannot be interpreted as a metric
tensor in the whole space-tlme manifold because its rank is
3, does determine a non-singular metric tensor in each of the
surfaces t=const., which are the instantaneous (iln terms of
absolute time) 3-spaces of Newtonian mechanics. Let @ be a

vector tangent to a surface t = const., with components ua,

so that uat = 0. Then it determines a differential form u
with compon@nts Uy such that

U= E{qub
py virtue of V, to within a transformation
Ug— Ug+ AEg A scalar,

Now let ™, ¥ be two such vectors with u,v corresponding forms.

Then, since gabtb=0, the scalar product defined by
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-

-y
TV = Sub Ui

is unique. We thus see that the physical interpretation of

gab 1s as a scalar product on the instantaneous 3-spaces of

Newtonian physics.

We note that in the Newtonian theory the affine con-
nection is not determined completely by the 'metric' gab,
The affine connection and the 'metric' gab are related by
IV, but this is not sufficient to determineVﬁbi completely
because the matrix gab is singular. (Note that r%i and °r%i
are two different solutions of ‘Vagbc = 0, considered as an

equation for the components of the affine connection. )

A preferred coordinate system in a theory is one which puts
some geometrical structure in the theory in a particularly
simple form. The multiplicity of geometrical structures
present in Newtonian theory thus enables us to have many
different classes of preferred coordinate systems, some more
useful than others.

The most restrictive set of conditions we can impose
on the coordinates is (5.30). It is easily seen that the
general coordinate transformation preserving all these
conditions is

< o
x*> R xB+ vxt + o, «,B=12,3
xt= x*+ b
where Rﬁg, v, &%, b are all constants and independent of

time, and the matrix R“g is orthogonal. These, of course,

are the Galilean transformations, as expected.
The next most useful set of coordinates is that ob-

tained by dropping the condition Or%i = 0, but retaining the
other two conditions. The allowed transformations are then

o Rig () x? + o)
xXt= x*+b

where the coefficients R“B(t) and a®(t) are now arbitrary
functions of t, subject to R“p(t) being an orthogonal matrix
for all t. These are the coordinates used when we have axes
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fixed in an arbitrarily moving rigid body, and they require
the introduction of inertial forces 1n the equations of mo-

tion, represented by the now non-zero °r%i.

Other classes of coordinates, e.g. (5.2), obtained by

dropping the condition on gab and allowing ta = aSa s, a¥ 0,

are of less importance.
Remember that in addition to coordinate transformations,

we also have transformations ofﬁﬁa given by (5.18) and equiva-
lent to the transformations of ¢ glven by (5.4); and linear
tpansformations of t as stated above, (5.11). The signifi-
cance of the transformations of ¢ has been discussed above,
and that of the transformations of t 1s simply a change in

the origin and the unit of absolute time.

To complete our study of Newtonian gravitation theory
we shall just say a few words about the relationship between
it and relativistic theory. In specilal relativity the co-
ordinates may be chosen so that the metric tensor takes the
Minkowskl form

%a_b': I OO0
o1 OO
oo | O
O o O~k
so that 71“"’; | © 00 (5.32)
o1 OO0
Sl Ke
O 00

where ¢ is the velocity of light. If we take the formal
1imit e¢-w, by which we know that special relativity reduces

to Newtonian mechanics, we see that%,ab reduces to the gab
of (5.30), while 7,4 becomes meaningless as it contains an
infinite element. This shows the origin of the 'metric! gab
of the Newtonian theory. The change of rank of gab in this
1imiting process is the cause of the loss of the completely
deterministic relation between the metric tensor and the
affine connection that is present both in special relativity
and in general relativity. The multiplicity of independent
geometric structures in Newtonian theory, which results in
the many possible classes of privileged coordinate systems
present in Newtonlan theory, 1s also missing in relativity,
where the mebtric tensor is the only independent geometric
structure, and the Lorentz group of special relativity is
the group that preserves the special form (5.32) of the
metric tensor.
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We shall now leave Newtonian gravitation theory to go
on to consider possible relativistic theories of gravitation.

5.7. RELATIVISTIC THEORIES OF SPACE, TIME, AND GRAVITATION

After Einstein had formulated the special theory of
relativity, it became clear that Newton's theory of gravita-
tion could not be reconciled with the postulates of that
theory, as Newton's law of attraction 1s based on the princi-
ple of instantaneous action at a distance, which is irrecon-
cilable with special relativity. It therefore became neces-
sary to look for a new theory of gravitation which was con-
sistent with the postulates of special relativity.

The first idea that comes to mind is to represent
gravitation by some geometric object fieldgﬁ, not necessarily
scalar, in the Minkowski flat space-time of special relati-
vity, just as the electromagnetic field can be represented
by a bivector field. Since the field ¢ must in some sense
approximate to the Newtonian gravitational potential in the
non-relativistic limit, as discussed in section 1.4,we ex-
pect ¢ to satisfy an equation of the form

D¢+ possible nonlinear terms = ¥ka (5.33)

where I0 is the D'Alembertian operator O = v? —éz/btz.
However, further consideration shows that this approach
probably isn't very sound, for, if we accept the equality of
inertial and passive gravitational masses as a basic law of
nature, it should be impossible uniquely to separate gravi-
tational and 1nertial effects by loecal experiments on test-
particles, and the inertial reference frames implicitly
assumed 1n writing an equation of the form (5.33) cannot be
well-defined. As we saw above, these phenomena occur in
Newtonian gravitation theory, although they are not usually
recognized as so doing. It may be argued that when other
phenomena are considered besides the motion of test-particles,
it may then be possible to determine an inertial reference
frame by local experiments. But, following Einstein, it
Seems aesthetically better to generalize from the fact that
local dynamical experiments on test-particles cannot dis-
tinguish inertial effects from gravitational effects to the
principle that no local experiments should be able to dis-—
tinguish inertial effects from gravitational effects. This
principle is known as the Principle of Equivalence. More
mathematically, we may say that in the presence of gravitation
it 1s not possible by local experiments to determine a unique
integrable affine connection in the space-time manifold.
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At this point we could give the line of reasoning which
led Einstein to his General Theory of Relativity. But this
can be found in many books (see the references for this
Chapter at the end of the chapter), and so instead we shall
present a more usual approach. The relativistic theory of
gravitation that we are looking for has to agree, in two
different limits, with both specilal relativity (in the absence
of gravitation) and Newtonian gravitation theory (in the weak-—
field and 'non-relativistic' limits), as is indicated in the
following diagram:

Relativistic theory of Newtonian theory of
gravitation 4 gravitation
L
¥ ¥
Special theory of Newtonian theory in ab-
7
relativity L_Eence of gravitation N

where arrows indicate increasing specialization. So we shall
tabulate the geometric form of the postulates of both special
relativity and Newtonian gravitation, and see how far it is
possible to guess the axioms of a theory of which both these
theories are special cases. In doing so one should remember
that a physical theory can never be proved; it can only be
made plausible or disproved. We hope to show how the general
theory of relativity can be made plausible.

Table of Axioms

Newtonian Theory of Gravitation Special Relativity

N1l. Space and time can be re- S1. Space and time can be
presented by a 4-dimensional represented by a 4-
differentiable manifold en- dimensional differen-—
dowed with tiable manifold endowed
(a) a symmetric affine con- with

(a) a symmetric affine

. a
nection [} X
be connection

(b) a metric tensor gab of (b) a metric tensor gab
rank 3 such Chat‘vagbc of gink 4 such that‘
= 0, and of signature- Va8 = 0, and of
(1,1,1,0) signature (1,1,1,~1).
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N2.

N3.

N4,

N5.

N6.

Now we know that Newtonian theory in the absence of gravita-
tion, i.e. with N4 satisfied rather than N5,
formal limitc - » f'rom special relativity.
modify the postulates of speclal relativity as laid out above
as little as possible congistent
limit in place of N4.
vacuo in the presence of gravitation R
36 then give the general relativity poggulates for the gravi-
tational field in the absence of matter.

the problem of the field equations in the
later in the course,

consistent generaliza

(c) a differentiable func-
tion t, the absolute
time.

There exist ideal clocks S2.

which measure absolute time
t.

Certain restrictions are im- S3.

posed on the curvature tensor,
given in section 5.5.

In absence of gravitation sk,

R%becd = 0.

In presence of gravitation, S5.

Rab = 0 in vacuo, Rab =

Mﬂkftatb in matter.

The world-lines of freely S6.

falling test bodies are the
. a
geodes1cs‘of1“£0.
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with N5 appearing in the
Clearly we must put in S5 that in

as the second part of N5 has no obvious
tion to the relativistic theory.

We hope that we have shown above that by presenting
speclal relativity and Newtonian gravitation theory in geo-~
metric terms, general relativity theory is the most natural
generalization of special relativit
tation in a manner which will red
theory in the non-relativistic 11
At this point we should perhaps mention that most of the
other postulates S1 to S6 in the above table could be modified
also in the passage to a relativistic gravitation theory, and

¥y theory to include gravi-
uce to Newtonian gravitation
mit,

Chapter 5

Along any time-like
world-line a proper-
time T is defined by

2 a.,. b
ats = 80X dx
There exist ideal clocks
which measure proper
time T along their world-
lines.

Restrictions on the cup-
vature tensor follow

be

from V.8 = 0, and from

rank of gab being 4.

In absence of gravitation
R%ecd = 0.

The world-lines of free
test bodies are the

. a
geodesics of rgc.

follows in the
So we want to

= 0. S1, S2, S5 and

We shall return to
presence of matter
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that many theories have been proposed in which such generali-
zations are made, Examples of such generalizations are:

(a) use of a non-symmetric affine connection
(b) use of a non-symmetric metric tensor
(¢) dropping the condition Vagbc = 0 which says that

the affine connection is metric.
Having mentioned their existence, we shall not pursue them
any further.
References:

On the geometric formulation of the Newtonlan theory
of gravitation:

E. Cartan, Ann. Fe. Norm. Sup. 40, 325 (1923).
/

E. Cartan, Ann. Ec. Norm. Sup. 41, 1 (1924).

K. Friedrichs, Math. Ann. 98, 566 (1962).

P. Havas, (preprint).

A. Trautman, C.R. Acad. Sc. Paris 257, 617 (1963).
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6. FUNDAMENTAL PROPERTIES OF GENERAL RELATIVITY

6.1. THE PRINCIPLE OF GENERAL COVARIANCE

This 1s a principle which is often considered to be at
the foundations of general relativity, but we have managed to
obtain general relativity by a {(we hope) fairly convincing
chain of reasoning without ever mentioning such a principle.
So perhaps we should now discuss the status of this principle.

It is a principle that was first put forward by Einstein;
and it 1s often stated in the following forms, which are not
exactly equivalent.

A. All coordinate systems are equally good for stating
the laws of physics, and they should be treated on
the same footing,

B. The equations of physics should have tensorial form.

C. The eqguations of physics should have the same form
in all coordinate systems.

We shall consider the meaning that is to be attached to each
form.

When one uses form A, one wishes to emphasize that,
since there is no preferred integrable affine connection in
the theory, it is not possible to distinguish a set of iner-
tial coordinate systems. This is in some way a negative
statement, and should not be overemphasized. In particular
cases when we have a Space~time manifold that refers to a
definite physical situation, there are certain coordinates
which can be preferred to others. For example, when we
consider the field of a spherically symmetric body, we expect
the field itself also to have spherical symmetry, and cepr-
tainly coordinates that are adapted to spherical symmetry
are to be preferred over other coordinate systems. But this
should not be confused with the contents of statement A, which
really says that there are no inertial coordinate systems in
general relativity.

When the form B is used it means that if, in physics,

we have a solution of an equation in one coordinate system
and then transform this solution to any other coordinate
system, then the transformed solution must satisfy the trans-
formed equation. Tensorial equations have precisely this
property.

We now come to the form C of the principle orf general

covariance. Suppose that in a certain coordinate system we
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have an equation
A= O (6.1)

where Aa are the components of a differentiable form field.
Introduce a vector field U such that U =&, where {?al is

fhe natural basis associated with the coordinates. Then in
any coordinate system the equation (6.1) can be written in
the form

LF/\f=<D.

This procedure, however, involves the introduction of an

guxiliary vector field UW. I think that one should not intro-
duce such additional structures in addition to those already
present in the axioms of the theory (e.g. the metric tensor,
affine connection) and to those that are necessary to describe
the physical system. I think this statement is rather impor-
tant, but it is denied by some people. Fock, for example,
considers that Einstein's theory as formulated above 1s in-
complete. He claims that, in order to make the theory mean-
ingful and complete, one has to introduce in addition to the
metric 8.1 and the varliables describling the physical system,

privileged harmonic coordinate systems satisfying the condi-
tion‘bb(J:E gab) = Q. Again, Mdller claims that unless one

introduces a privileged set of tetrads (orthonormal basis
vectors) at every point, one cannot meaningfully talk about
energy. In my opinion these additional structures are not
really necessary, and a physical theory with these structures
is not correct. The reason for my claim is that I don't
think one can give a physical interpretation to these addi-
tional structures. If such a physical interpretation could
be given, then I agree that one could introduce such struc-
tures. But the possibility of giving a physical interpreta-
tion to them includes them in those allowed by the principle
I have already stated.

6.2, THE PRINCIPLE OF EQUIVALENCE
We shall now discuss further the meaning and use of

the principle of equivalence, which was briefly mentioned
in section 5.7. The principle of equivalence states that the
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local effects of a gravitational field are indistinguishable
fprom those of inertial forces, and the principle acts as a
guide for obtaining the equatlons of motion of systems in
general relativity when the corresponding equations in special
relativity are known. We shall illustrate the procedure by
considering Maxwell's equations in vacuo. If fab is the
elecbromagnetic field tensor, then Maxwell's equations in
special relativity may be written in Minkowskl coordinates as

ab
{7 = 0, dyafg= O (6.2)

St111 considering special relativity, we may transform (6.2)
to an arbitrary coordinate system by making a coordinate
transformation, and the effect on the equations is to replace
partial derivatives‘aa by covariant derivatives‘Va, and the

Minkowski metric tensor‘nab, occurring implicitly in the
raising and lowering of indices, by the metric tensor gab:

Vf= o, Vi fog = O (6.3)

Now inertial forces occur in these equations in the
form of the affine connection used in forming the covariant
derivatives. The principle of equivalence tells us that the
local effects of a gravitational field must occur in the same
way. We may thus adopt (6.3) as the equations of the electro-
magnetic field in curved space, 1.e. when a gravitational
field is present; the difference from (6.3) being that the
affine connection in the covariant derivative will no longer
be integrable. The principle of equivalence, however, does
not force us to adopt (6.3). We could add terms explicitly

containing the curvature tensor Rabcd, and write, for example,
ab a bred
W + RdVE =0 (6.4)

since the second term vanishes in the transition to special

relativity, where R%ecd = 0. .
To avoid this ambiguity, it has been suggested that in
the transition to general relativity we should adopt a
Principle of Minimal Gravitational Coupling, i.e. we should
not add any terms explicitly containing the curvature tensor.
But this must be treated with care. For suppose we had
started, not from (6.2), but from the equations in terms. of

the U-potential A™ in the form
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pPA= 0O VA= O (6.5)
Then by the above procedure we are led to take
Y, VPA= 0 A= 0 (6.6)

for the electromagnetic field equations in curved space-
time. Now using

foJo: VQAB—— vbAq (6-7)

and the Ricci identity, we get

Gf = VAL - TPA™)
= TG VA + V(T AR) + R AP (6.8)
= qupt 53(65)

This agrees with (6.3) in empty space, Rab = 0, but not in

the presence of matter. There are, however, several reasons
lending us to adopt (6.3) rather than (6.6) as the correct
equations of electromagnetism in general relativity:

(1) The equations (6.6) are not gauge-invariant under
the restricted gauge transformation Ada Aa + BaA,

Vg?a/\ = 0, under which (6.5) are invariant, and

consequently we do not know in which gauge (6.6)
should be considered as holding.

(i1) If we consider a system containing charges, des-
cribed by a current vector ja, (6.5) becomes

327 Aa= Ja A= © (6.9)
and so (6.6) becomes

vbvb/l\q: j& v&AQ: e} (6.10)
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from which (6.8) gives

5= R%AT— (6.11)

Acting on this with<7a and using the identit37<7£7bfab=0

gives

VQJQ: V'zx(RmbAb).

which in general does not vanish, and hence charge is
not conserved by these equations. Not only is this

zesthetically distasteful, but also the law of con~
servation of charge is one of the most accurately tested
laws of physies, and we could use the experimental ac-
curacy to set an upper bound on the curvature of space.

On these grounds we adopt (6.3) as Maxwell's equations in
general relativity.

In the case of Maxwell's equations there is one formula-
tion, namely (6.2), on which the prineciple of minimal gravi-
tational coupling may be used. We now consider another
example which shows that even this principle may not neces-
sarily be applicable. The equations of motion of a spinning
particle in general relativity have been derived in many ways,
e.g. one may first consider an extended body described by an

energy-momentum tensor Tab and obtain equations of motion
from the conservation equation‘vbTab = (0, and then consider
the limiting case as the body is shrunk to a point while
maintaining a finite internal angular momentum. The equa~-
tions obtained by this and every other method show that the
spin, described by a skew tensor Sab, interacts with the
curvature of space to produce a force %Rabcd ub SCd which
denotes the particle from a geodeslc, where u~ is the velocity
vector of the particle. But if one started from the equations
of motion of a spinning particle in special relativity, the f
principle of minimal gravitational coupling would prohibit the
inclusion of such a term in the general relativistlc equa-’
tions.

A further difficulty arises in the transition from
special to general relativity 1f the speclal relativity
equations contaln second partial derivatives, since the cor-
responding covariant derivatives do not commute. So should
we, for example, replace a term Ba@buc w1th‘Vévbuc, v’gvauc,
V(QVb)uc or some other term? What term? There is no simple

answer to this question; all these forms being equal in
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speclal relativity, where Rabcd = (.

Having now seen what problems can arise in the trans-—
lation of equations of motion from special to general rela-
tivity, one may ask what method can one use to be sure of
obtalning a correct result. The only certain method is to
analyze a complicated system into simpler ones whose equations
of motion in general relativity are already known. This may
be done for the spinning particle, for example, as follows:
First consider an extended body and write down equations of
motion for an element of it, taking into account the forces
exerted on 1t by the rest of the body. Then integrate over
the whole body so that the internal forces integrate to zero,
and finally shrink 1t to a point. The particle itself cannot
be considered as a single element since, in the limiting
process of shrinking to a point while maintaining a non-zero
internal angular momentum, the internal velocities in the
body must tend to infinity. In cases where such an analysis
is impossible, we use the principles of equivalence and of
minimal gravitational coupling as guides, but they must be
used with caution. Besides Maxwell's equations, another prob-
lem requiring great care is the Dirac equation, but we shall
not consider this here.

6.3. CORRESPONDENCE WITH NEWTONIAN THEORY#*

A requirement of any relativistic theory of gravitation
is that it should reduce to Newtonian theory in the case of
slowly moving bodies in a weak field. We shall now show
that, together with the assumption that space-time may be
represented by a 4-dimensional Riemannian manifold of signa-
ture (---+) in which free falls are represented by geodesics,
this requirement leads to a condition on the weak field form
of the metric tensor.

Consider a space-time containing a weak gravitational

field, so that there exists a coordinate system {x?} in which
the components of the metric tensor, gap> differ only slightly
from the Minkowskl metric .

Nab = A‘QS (=1,=1, ~1,+ 1), (6.13)

¥ Lecturer's note: This section has been considerably ex-
panded by one of the notetakers (W.G.D.) from the presenta-
tion given in the lectures.
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Further, suppose that this field is produced by bodies whose
velocities in this coordinate systems are small compared with
that of light, c¢c. Let AN be a small dimensionless parameter
of order v/c, where v is a typical particle velocity, and
suppose that gab can be expanded in powers of A thus:

Gab = Yab + Ahap + OO (6.14)

where x4 = ¢t. Then since in 'time' 6xu the bodies produc-

ing the field move only distances of order AGxT, derivatives
of the fleld variables hab with respect to xu are of order »

times the spatial derivatives of these variables. To make
this distinction appear explicitly in the mathematics, we
may introduce an auxiliary time-variable

x° = axt (6.15)

and write all time derivatives in terms of this, so that then,
say, Blhab and Bohab are of the same order in A.

Now consider the motion in this field of a free test-

particle for which also v/c 1s of order ™. Let & = x%(s)
be the world-line of the particle, s being the proper time
measured along it. Then )

cdl = 1+0W), L dx* =0, o=1,2,3. (6.16)
ds < dt
do*= ) dx®fcdt
Is ¢ () (6.17)

A5 = 1 dix % e dE Y + Lda® 26D =1 4o _gLT—lCHOQ\ﬂ 7
g‘f‘z s dtz( dS) Cdtr ds* SR pe (Cds) (6.18)

Using these, the geodesic equation for the particle path,
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dx* + Moo dxdx= o
ds? ds ds

can be put in the form

Ldh* + 1 T8 daxPdxc (1 + o) =o.
C?’ dtz. C" bc‘dt dt (6'19)

-
-
.
o
.
.
2
.
-
-
.
.
.

Now let & = 1,2,3, put a = < in this, and use (6.14) to give

L —A (D chbx — 2ch Pdx(1+ 0= o,
C_"dgl izé‘l bl'\ce(“‘ cNbwx Yo%, bc)g—;-; f\i (6.20)

G

Using (6.15) and (6.16) we see that apart from the term

dx
& dt 4t

{
fJ
&
i
%
n_

from the parentheses in (6.20), all the terms get a a-factor

either from a d/c dt or from a Bdyhop =X 3¢ hap .
So (6.20) simplifies to

LA™ AN uhu (1 + OWN) = ©
EA% +é o Ny Y) R

which can be written

e o
%_%1 = —Lc ?J:cﬂ,wou\)) . (6.21)

But the Newtonian equation of motion for a test-particle
in a gravitational field of potential ¢ is

di* = — .
e %&5‘(“ (6.22)

Comparing this with (6.21) and noting that at large distances
from the sources of the field ¢g-»o and gqu——al, we get

Guy = 1+ 2¢ + OWV/) (6.23)
c
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which is the promised condition.
Now let us consider the effect of a small coordinate
transformation

Xt X* = X*+ AT (6.21)

which preserves (6.14) and tha
show that

b = 0(N) x Qxhab' We easily

Yalb = Gab ~ A2yt 3p8) + OO (6.25)

- b -
where € a = Qabg . To preserve bﬁhab = 0(X) x axhab’ we
see that we must have 2,8 = O(X) x2,§_. From (6.25), we

thus see that the only component of the metric tensor which
is unaltered to first order in A by the transformation (6.24)
is 8y since this is the only one in Whidlga occurs 1in

(6.25) only in the form of xu derivatives.

We have therefore shown that the only component of the
metric tensor which is well-defined to first order for a
slowly varying weak gravitational field, is determined to
thils order by the requirement that the theory should agree
with Newtonian theory to this order. It is given by

us =+ 28 + O(wk)
CZ.

¢ being the Newtonlan gravitational potential.

6.4. STATIONARY AND STATIC GRAVITATIONAL FIELDS

A naive definition of a stationary gravitational field
would be : one for which a coordinate system {ka} exists in
which‘bgab/axu = 0, xu being a time-~like coordinate. We
shall try to formulate this in a more mathematical way. In

this coordinate system define a vector field€ ? by§% = Sua.

Then

g—ﬂab: Scacaab + aqcbbgc + ﬂcbbq %C
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= éﬁab = awaqb on putting gaz {;3

O by the stationary condition.

so that the metric is invariant under dragging along bygza

or in other words,g & 45 a Killing vector field. Conversely,
if a space possesses a time-like Killing vector field§ 2,

there always exists a coordiante system for which§ & = (0,0,0,
1), and then?}gab/bxu = 0. We therefore say that a space-

time 1s stationary if it admits a time-like Killing vector
field.

A special case of a stationary space-time i1s one for

which the trajectories of § & are orthogonal to a family of
hypersurfaces. Such a space-time 1is sald to be static, and
1t implies the exlistence of functions’ X and o such that

gq:%%{q (6.26)

from which we easily obtain

gi‘_q Eb%Q]=O (6.27)

So for a static space-time we have a§ a for which

VaEp +VpEq= O (Killing's equations) (6.28)
§81<7b§§1:(3 (Equivalent to (6.27)) (6.29)

From (6.28) and (6.29),

§QVE§C'* Ep%8q + Ec Y EL, =0
Multiply this by § . put § 2 - §C§C and use (6.28) to give
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gqvbgl - gbvagl + gl(vo.gb_vbgq):: O

and hence

?i“ (%) - %x" @%}

Therefore there exists a function o such that

%3_?%% » e Bg=Eiy e (6.30)

which has the form (6.26) with X =% °. . .
Now choose a coordinate system in which€® = (0001) =‘6“.
Then by (6.30),

Gt = Gob g: = jmbgb = Eq = § 00
and
gl = (jab 838; = aw—
Hence
ot = Guy 0a0 (6.31)
Putting a = 4, this gives
0= | and therefore o= x"‘+f(x‘; x* x3)

for some function f. Now make a coordinate transformation

Xt X% = X%, o= L,2,3

[
30 xtas = xtaef o, x3),

Then we stiil have
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t t i

g'= o g% = i = &
dx® axt

and so we may suppose this to be the coordinate system used
above, so that (6.31) glves

30‘14,:' e} . = \,1,3

We have already seen thatg a = Sqa implies bligab = 0, and

thus we have proved the following theorem:
In a staticspace-time there exists a coordinate system,

which we shall say 1s adapted to the Killing vector f‘ield%a,
in which the metric 1s time-independent and 81y = 8oy = g34= 0

Now let us see whab freedom we have left in the co-
ordinates. Suppose that there is only one time-like Killing
vector field €%, and consider two coordinate systems {x%% and
{xa'g adapted to €%, Then

L °!=‘B a'gb - o b = o
=€ sg;bg %));(b Sy b%& (6.32)
and 0= Guy = X" 2% qey = 2x% qaw by (6.32)
'Bx.“ BX%%Q 31‘" 3Q y . .
= __)gi as 30‘14'-“—0. (6.33)
X

From (6.32) and (6.33) we see that the 'allowed' coordinate
transformations are

1 !
X% X = f*(xﬂ), o, B=12,3 x#»x* = ax*sb, a,b, constants.

If further By tends to a constant value at large dis-
tances, we may impose the further condition Byy— 1, which

fixes a =11, and 1f we do not allow reversal of the direc- :
tion of time, then a > 0 and we must take a = 1. The time is
then defined to within an additive constant, and is called a
world—-time.
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If the space-time admits more than one time-like Killing
vector field, the allowed coordinate trans formations may be
less restricted.

6.5, PROPAGATION OF LIGHT IN A GRAVITATIONAL FIELD

The propagation of light is governed by Maxwell's
equations

b
vef =0, Viafoa = O (6.34)
Put
fob = Re(Fp ™) (6.35)

where Fab is a complex slowly varying function of position

and ¥ 1s a rapidly varying phase factor. This represent a

wave whose amplitude and polarization, given by F b? changes

little over a large number of wavelengths. a
Substitute (6.35) into (6.34) and neglect derivatives

of Fab in comparison with those of ¥. We get
b
Fo = 0 (6.36)
Flab 3q¥=0 (6.37)

which are exact in the infinite-frequency (or optical) limit.
From (6.37), there exists a vector field W, such that

and on putting this into (6.36) we get

RESESER (6.38)
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which is called the Eikonal Equation.

P\A‘t .k(l. = BQ W >
so that
VQ&b - Vb ‘g(o\

Then -(6.38) shows that k® is null, and so

’kbvb{qo = 'Y‘ibvqf‘{b: %.vq(f‘(b‘?‘{b)f-O (6.39)

Henice k° is tangent to a null geodeslc congruence; the tra-
jectories of k% are called rays.

{ 2 Y=g ray
AS’.
Ty,
Emitter Ohserver
Now consider the world-lines of an emitter and observer

of light, as 1llustrated, and consider two rays of light
joining them. Since kaéa‘-}’ = 0, they will lie in surfaces of
constant ¥y, say ¥ =Y and Y = ‘«YO +AY, withaY small. Let
the interval between the polints of intersection on line 1 Dbe
ASq, and on line 2 be A S5 and let 'ﬁl and '\32 be the unit

tangent vectors to the two lines. Then we have
(da¥)yAs, U] = AY = (3¥), Asy U (6.40)

where (aa‘f’)l, ('aa‘{’)Z are evaluated at the points of intersec-
tion on 1 and 2 respectively. But if‘wl andw2 are the fre-

quencies assigned to the light by 1 and 2 respectively, then
since the surfaces ¥ = const are surfaces of constant phase,
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(6.40) gives

W = b5 = ('%io‘uq)i (6.41)
Wa AS (R0,

This formula 1s valid in both special and general relativity
and gives the combined Doppler and gravitational shift of
spectrum lines.

For a static gravitational field we may take both
world-lines to be trajectories of the Killing vector field
This situation corresponds to the emitter and observer being
at rest relative to the field, and the distance between them,
measured along a geodesic normal to both lines, is time in-
dependent. In this case

R V,h) = R v, ke, + KR (7,€,) = ©

since the first term vanishes by (6.39), and the second term
vanishes as ‘7@1§b) = 0 by Killing's equations. Hence kaga
is constant along the rays. But also by construction,géiis

parallel to u®, and so & ® = §u®, where € 2 = g‘igé.
Equation (6.41) then gives

w = uth = (§),
Wa Chqu), (€

Further, in a coordinate system adapted to%?, kS 2 = 8y So
now

w = {(M)lli’* . (6.142)

a (9us)y

This is an exact formula for a static space-time. IFf
we now suppose the gravitational field to be weak, and use
the Newtonian approximation given by (6.23), (6.42) gives for
the gravitational frequency shift

Aw = — A¢ | (6.43)
w c* :

We note that this result has been obtained without using any
field equations. It has recently been tested experimentally,
to quite high accuracy, in the Earth's gravitational field
by using the MBssbauer effect to obtain very narrow spectral
lines.
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We have been able to separate the gravitational shift
from a Doppler shift in a static space-time, because then a
meaning can be attached to two observers spatially separated
being at rest. In a general space-time this is not so, and
the gravitational and Doppler shifts are not so separable.

6.6. LOCAL REFERENCE FRAMES AND FERMI TRANSPORT

We shall now investigate the local reference frames
that an observer may use to describe the behavior of matter
in his neighborhood. Consider an observer O moving along an

arbitrary time-like world-line C, of equation x% = xa(s),
with s being the proper time measured along C. Suppose he
observes a free test particle P in his neighborhood, whose

world-line L has equation & = ya(s), where ya(s) is the
point of intersection of L with the instantaneous 3-space of

observer through x%(s). s will not, in general, be an affine
parameter on L, and so the geodesic equation for L takes the
form

Ddyt = nedy' . (6.141)
ds ds d3
C
L
3 %QQAQS!L, 2. 2%
P Q
(s)
X \—F d
observer test parlicle
Now O will describe the position of P by a vector ¥ af 0
whose direction 1s that of the geodesic G jolning O and P,

and whose length is the length of that geodesic. Let G have

equation x® = za(t), with t the distance measured along G

from O, and

280 = xS 2%@))= Y0 (6.45)
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Then

P2+ TR dPd® = o (6.146)
a1 dt dt

Expand za(tl) in a Taylor series about t = O:

2% = 2°%(0) +<Az“>t + L(gl_‘]:)tl + O (6.1
arit, \ ‘ 17)
A 2\dE* /oy

Then using (6.45) and (6.46), and noting that

r‘°=(s_\£>t. , (6.18)
dt 4
(6.47) gives

3“(5) = xs) +¢* —-_\i\"“:t(x“) rers + o(r®) . (6.549)

Differentiating twice with respect to s gives

du? = dx® + dr' + o) |
% 4 ds ~ (6.50)

2 o a a |
j?; = %* + % -—r‘béx)%"%g + o) (6.51)

Now remember that dya/ds is a vector defined on L, and dax%/ds

and ra are vectors defined on C. Then we have

D d_%q - %q -+ Y—‘EC c'i?bé%c

ds d3 d¢» ds
Ddxt = aad + rjic dac? dot
ds ds ds* ds Qs
DY = "+ T dxP S
ds ds ds
et = & +alp dxbdes + O
ds> as> ds ds
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Using these and (6.50) we easily see that (6.51) can be put
in the form

Ddd = D d* + D™ + oM. 6.50
dsfg ds ds ds» (6.52)
Now put
dof | @
w2 dx
ds (6.53)

and use (6.44) and (6.50) to write (6.52) in the form

%::x@ma+%)— ﬁi~OQﬁ (6.54)

where ° denotes D/ds. To determine A(s) we use the condition

that ya(s) lies in the instantaneous 3-space of 0, by which
we mean

w-r=0 (6.55)

l-

R+ =0, UF + 2AF +UF=0 (6.56)

<

and

Gu =\ gives GU=o0, (6.57)

Scalarly multiply (2.54) by @ and use (6.56) and (6.57)
to give

NS) = — 2 {j\’_’? + O

which, put back into (6.54), gives

o,
=

= -T — 2R+ + 0@, (6.58)

R
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This is the equation of motion of P as seen by 0. We shall

use it below only in the case T = 0, 1.e. P coincides in-

stantaneously with O, and in this case it is exact. A more
detailed investigation of the terms of O(r) shows that they
are negligible if \#| is small compared to the radius of

curvature of space, and \Blec l, i.e. the velocity of the
particle is small compared with that of light.

Now suppose O refers ¥ to an orthonormal basis of
vectors E;g M = 1,2,3, spanning his instantaneous 3-space.
Write "é’u =W, and let p,q = 1,2,3,4. Then

o= N s where Npq = d“ﬂc”““‘““V’ﬁfi-(6°59>
Write
—*Pd—f’)&f,%ziv (,U/“,‘g!;f S e—(r r"‘é—g? ex, ){'J'Sa ex (6.60)

Then Wyp= - Wiy from differentiating (6.59). Also, since r#
etc are scalars, we shall write P* to mean drM/ds and not

B-8% Now

e = (BhE)E, + (B IT

o

~

. .
wh e, — (U-gr

wWH, B — K*

(6.61)

;l

il

Also = FRM + TFeEH ,,
= el + wk, " (6.62)

and differentiating again gives

.o .o

r=

R

B = WL W T G 2wk Y (6.63)
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But from (6.58) and (6.60) we easily get

T = = )4 = 2( P+ o (6.64)
and hence from (6.63) and (6.64), at r = 0 we have

Fl = =5 = 27K LR 2 wH B (6.65)

which relates the velocity and acceleration of the particle,
referred to the axes §L, as it passes through 0. We note
that it i1s composed of three parts:

(i) —K“, independent of M, which can be determined
using a particle at rest.

(ii) —ZEN(KV&V) parallel to the velocity and propor-
tional to (velocity)g.

(i11) 2whEY, which depends on the motion of the axes

and has the structure of a Coriolis force, pro-
portional to and perpendicular to the velocity.

We thus see that w*behaves as an angular velocity of
the axes of the reference frame, and that the axes are the
nearest that can be obtained to Newtonian non~rotating axes

when WH = 0. fThis is further confirmed if we consider the
extra terms that arise in (6.65) when we take the case p # 0.
For then from (6.63) we see that we get on the right-hand
side of (6.65) the additional terms

__w,u-v_ w"f‘r"f -+ (b/-(v—r"l"

among others. The first of these is the centrifugal force
associated with axes of angular velocity w4 and confirms our

interpretation above of wH”, The second is also familiar as
the inertial force associated with non-uniformly rotating
axes. All the other terms vanish in the 1limit of flat space-
time and velocities small compared with that of light.

We now show that the axes can always be chosen so that

wH= 0. TFor (6.61) and (6.60) give wM’ = 0 as equivalent
to

el = - -7

(6.66)
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which is a set of ordinary differential equations, which

always have a solution for given initial M at any point of
C. Moreover, these equations preserve orthonormality of the

tetrad (@, Bu) defined by (6.66).
A vector W defined on C whose components referred to

the tetrad ?b are independent of s is said to be Fermi-Walker
propagated along C. ILet wP = w-gP, Then we have

DW = weD?, = @ma +WHADZL e Ty =T

ds ds ds
= (WM~ WwHREIT oy (6.66)
N —3 —
and since WM@,«L = W=, this gives

°

DW = (&)W — (w.TT (6.67)
ds

as the condition for W to be Fermi-Walker propagated along C.

From (6.67) one may easlly verify that T itself is Fermi-
Walker propagated, and that Fermi-Walker propagation is metric,

i.e. 1t preserves scalar products. Consequently if ¥-T = 0

at one point on C, it remains so under Permi-Walker propaga-
tion. Then (6.67) reduces to

P¥ = — @ W (6.68)
ds

which is known as Fermi pbropagation. Finally, we note that
Fermi-Walker propagation along a geodesic (¥ = 0) reduces to
parallel propagation.

We have thus shown that Fermi propagated axes are the
nearest that can be obtained in curved space-time-to a
Newtonian non-rotating reference frame, and that such axes
can be determined by Ilocal dynamical experiments.

The vector ¥ is normal to the curve C, and is called
the curvature vector of C. If we write 3 = K, ‘&) = 1,

K >0, 7 is called the normal (or first normal) to C, and K
the first curvature. :

Now consider (6.65) with Fermi propagated axes for an
observer on the Earth. Then $M = g”/cz, where g‘(is the
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gravitational acceleration, the 02 arising from s = ct. 3o
(6.65) gives k4= —g“/cz, and the term -27*(X,r") is easily

seen to be negligible for velocities <4< c. Since kH= ﬁfgﬂ,

we see that the first curvature of our world-lines on the
Earth is

K = o~ o9 %10 em™t,

6.7. THE PHYSICAL DISTINCTION BETWEEN STATIC AND STATIONARY
SPACE~-TIMES

As we have seen in section 6.4, a stationary~§pace~time
is one containing a time-like Killing vector field §, and
correspondingly it has a privileged class of observers, which
we shall call Copernican observers, whose world-lines are the

trajectories of‘gn Now we have seen in the preceding section
that an observer can by local dynamical experiments determine
a Fermi propagated local reference frame which is fhe nearest
he can obtain to a Newtonian non-rotating frame. But in a
stationary space-time a Copernican observer has an alternative
eriterion for non-rotation, namely he may consider a frame
as non-rotating when neighboring Copernican observers appear
to be at rest in that frame. We shall investigate under
what conditions these two criteria agree.

At one point let a Copernican observer C set up an

orthonormal reference triad'@h of vectors normal to%’, and
let them be propagated along his world-line by dragging along
byg, i.e. so that

=7
EQ/@("‘O‘ (6069>
§
Clearly this is the condition that neighbouring Copernican

observers appear to be at rest in the reference frame. Also,
since

£ Fab= O CK‘“W\%% e.%uot\ohg ond ég =0, (6.70)
€ S5

we see that (6.69) preserves the orthonormality of the axes
and their orthogonality to §. Now using the notation of
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section6.6 Wehavegfparallel to ¥ for a Copernican observer,

£-€W, g4 ). (6.71)
But (6.69) gives
g% en — €5 =0, (6.72)

and using (6.71) this becomes

‘%@*ﬂ%‘%“ O. (6.73)
Hence
° -1
Wer= €&y =§ e e2 VL8, (6.74)

where the skew-symmetry of (A%wis maintained by Killing's
equations. Also,

Cor b _ e, b
3§ e‘U’ﬁ/“ %Eqvb%c] - % ﬁu-epvf_qg‘o]
and comparing with (6.74) this gives, on using (6.71),
— -2 a b, ,C
Wiy = 3T Tepe W L V€ (6.75)

from which wyw = 0 1if and only if

EaVeSa= O -

_From (6.29), this is the condition for a stationary space-
time to be static. Bubt wuw = 0 is the condition in which the

frame is Fermi transported, and hence neighboring Copernican
observers in a stationary space-time appear at rest in a
Permi transported local reference frame if and only if the:
space~time is static. ‘

On a cosmological scale this implies that dynamical and
astronomical criteria of non-rotation agree in a stationary
universe if and only if it is also static.
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6.8. EVALUATION OF THE CURVATURE TENSOR AT THE EARTH'S
SURFACE

We have already seen that agreement with Newtonilan
theory for a weak slowly varying gravitational field requires

Byy = 1+ 2¢V02. We shall now see that certain components of

the curvature tensor may be similarly determined. For this
we require the equation of geodesic deviation, which was
proved in Prof. Pirani's lectures, and which states that if
we have two neighboring, almost parallel geodesics and” & is
the orthogonal connecting vector joining them, then

D:’Y,q - Rabccl ub%cuci__: O, (6.76)
ds*

where u® is the unit tangent vector to one geodesic and s is
the proper time (distance) measured along it. We shall con-
sider two cases for freely falling bodies near the Earth's
surface:

Case 1. Slight horizontal separation.

B

L S D
8-

Choose locally Minkowski axes with origin on the Earth's
surface, z-axis vertlcally upwards and x,y axes horizontal.
Consider two bodies falling freely toward the center of the
Earth, one down the z-axis and one down a line in the (x,2)
plane making a small angle ¢ with the z-axis, both belng re-
leased from rest at the same time t = 0 from the same height
By Let x° = ct. Then since the velocities of the bodies
are<< ¢, we have

Ut (0,0,0, 1)
= M,0,0,0)

with
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7= (R+1)$
and
Z= Zo— hat™
J
where R 1s the Earth's radius and g is the acceleration of
gravity at the surface of the Earth. Then

Dyt = (1 Mb ©,0,0) 2=( -4¢,0,0,0)
ds <

and so substituting into (6.76) we get approximately
(- 48/c40,0,0) — (Rigy, Ry, Rizy,0) (ReDg = 0 (6.77)

But if M is the mass of the Earth and k the constant of
gravitation, then

3:“&M/Rl

and so putting z = 0 in (6.77) gives

RHHI- = %-m 3 Rlvu\}t O Ragts == O
<R
where we have lowered the first index with o™ M ap By
symmetry we clearly also have
Rastas = R Rausp== O

Case 2. Slight vertical separation.
We now take both bodies falling freely down the z- ax1s,
released from helghts Z and zZ + &z respectively at t = 0,

with $z small. Then
u?= (0,0,0,1)

N2 (0,0,0)
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Now the gravitational acceleration at height z is

3(2):(@’\_ = &g\ -2k M?_ + 0@, z<R
R+2)* *

and hence
2= {2.,1'%2 - Ji(% - 1& MQZR;EYJ)’C‘*- Oc\;s)}
(o)
=%z+ M5zt + 0G?),
R3
There fore

D'y’ = (0,0, ﬁ&‘;ﬁé_l)@

ds* R3c*
and so (6.76) takes the form

(O)O)J&R}\;‘ %Z—)O) - (R’L{.glf )Rz}alf) RS’3V‘" O)%Z.': O

Hence

Russ= 0O, Rausa#=0 Rayay == 1@‘?
<

So finally we have

R"*ﬁ‘*t O if «#8, Ruyw™=Rus™ %*%s’ L ‘l%Rmz

at the Earth's surface, to first order in k.
We note from this that to first order in k, the R1001

def
tensor, Rab = abc’ satisfiles

R-w- = R ¥ Ragay tRyyp= O (6.78)
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6.9. THE GRAVIATIONAL FIELD EQUATIONS

We have so far not decided what the gravitational field
equations should be in the presence of matter, but have sug-
gested that in the absence of matter

Rab= © (6.79)

This is supported by our approximate calculation above,which
shows that agreement with Newtonlan theory near the Earth's
surface requires RMM = 0 to first order, but it does not

necessitate (6.79) even to first order in general, as our
result may be due to the special symmetry of the example.
Since Newtonian theory is described by Poisson's
equation, a second order differential equation for the poten-
tial ¢ in terms of the mass densityf , and we have seen that

gqu:k 1+ 275/c2 for weak fields, agreement with Newtonian

theory for weak fields strongly suggests that our relativistic
equations should be second order differential equations in
the metric 8.1 with mass occurring as the source of the field.

But because special relativity has shown us that mass and
energy are equivalent forms of the same entity, this suggests
that not only substantial matter but all forms of energy
should be included in the source terms. We also know from.
speclal relativity that the way covariantly to describe an

ab

energy density is by means of an energy-momentum tensor T 5

and so we now expect Tab to be the source of the gravitational

field.

To continue, we must resort to less strong arguments.
Poisson's equation involves both and the second derivatives
of ¢ linearly. We may therefore ‘expect the relativistic

equations to involve 2P (remembering that Tq%vj>) and the
second derivatives of gab linearly. But we also require

that the theory should be formulated interms of tensors, and

the only tensors involving Tab linearly are Tab and T dif o 5

unless we are prepared to go to higher than second rank a.
tensors (e.g. B.b Tcd). It can also be shown that the only

second rank tensors that can be constructed out of 2.1 and

its first and second derivatives, and which contain the second
derivatives linearly, are R and Rg_, , where R is the Riccl
def —a . ab ab ab i
tensor and R "2 Ry is the curvature scalar. We see that two
possibilities are open to us, either a scalar or a second rank
tensor theory. A vector theory may be ruled out also on the
ground that it would, like Maxwell's theory, lead to a repul-
slon between two masses of the same sign.
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For a scalar theory we see that the only possibility is
to take

R=AT

where N is a constant determined by requiring Newtonian theory
to hold in the weak field 1limit. This, being only one equa-
tion, is not sufficiently restrictive to determine the metric
uniquely even with suitable boundary conditions, and it

must be supplemented by further conditions. The simplest
possibility is to require that the Space be conformally flat,
i.e. that there exist a scalar field $(xX) such that the
metric can be put in the form

b= S

where is the Minkowski metric tensor = diag.(~1,-1,
ab ab

-1,+1). This condition is expressed by the vanishing of the
Weyl tensor

Cqbcd =0

and was proposed by Nordstrgm1 before the advent of general
relativity. However, it may be ruled out on experimental
grounds if we accept the experimental tests of general rela-
tivity, as it gives a wrong value for the precession of the
perihelion of Mercury, and it gives no deflection of light
by a gravitational field.

For a tensor theory we can take

b
R* +~Qa“bR + b3“b= TP (6.80)

where for given a and b, ¢ would be detéermined by corres-
pondence with Newtonian theory. To determine a, we remember

that in special reltivity Tab satlsfies a conservation law

BbT Qb: O .

We may generalize this to general relativity by requiring
that

1. G. Nordstrom, Ann. der Physik 42, 533 (1913).
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%(R¥- §Rg™)=0 (6.82)

and so taking the divergence of (6.80) and using (6.81) and
(6.82) gives

(a+3)vR=0 (6.83)

But if VéR = 0, contraction and differentiation of (6.80)
giveS‘vaT = 0, which we know to be false as T is not an abso-
lute constant. So (6.83) gives a = —lg and (6.80) becomes

R 5Rq™ + b gt = cTeb (6.84)

The term bgab is the so-called cosmological term originally
introduced by Einstein in an abortive attempt to prevent the
field equations having an empty space solution, and now
usually omitted for simplicity. ¢ is given by correspondence

with Newtonian theory to be c¢ = -8wtk/c , k being the Newtonian
gravitational constant. Equation (6.84) then becomes the
standard form of the field equations in general relativity,
namely

al — ab
Rb-*%chf“’: ~ arh b, (6.85)

Einstein also considered another possibility, the case
a = —L, b = 0. This arose in his attempts to describe all

matter by means of fields and singularities in the fields.
The only quantity he was willing to put on the right-hand
side of the field equations was the Maxwell stress-energy
tensor of the electromagnetic field, which has zero trace.
All other matter was to be described by singularities in
these two filelds. His field equations were then

b .
qu__ :TzRaub = const XT;awaH

in which both sides identically have zero trace. The attempt
did not lead anywhere, and we shall not consider it further.

Many more possibilities present themselves i1f we are
willing to drop either the linearity of the field equations

in the second derivatives of g,p and in Tab, or if we are
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prepared to use equations of higher than second order, neither
of which possibilities can be ruled out a priori. Such field

equations

consistent with the conservation equation (6.81)

can be conveniently obtained from an action principle. Con-
sider an action

where the
depending
systems.

I = j\-—-(ﬂﬂ‘ln BG%bC)BQBbac.C!) "'-) AL{-X

only requirement on L is that it be a scalar density
on its arguments in the same way in all coordinate
Then if we define the variational derivative

G::\\o ‘i—é _Sl
63ub

we shall see in the next chapter that it is a tensor which
identically satisfies

G =0

and therefore field equations of the form

G—Qb'—'—-‘ >\T C\b

are consistent with (6.81). Our field eguations (6.85) can

be so obt
taking L

have been
tional ge

6.10. THE
The
test are
(1)
(i1)

(i11)

ained by taking L = R/-g. Eddington considered
= Rade R bod J-8, and many other possibilities
abc
suggested, but none has proved superior to conven-

neral relativity.

PERIHELION PRECESSION

three discrepancies between Newtonian theory and

general relativity that have been subject to experimental

The gravitational red shift of spectrum lines.
Secular motion of the perihelion of planetary orbits.

The deflection of light rays by a gravitational
field.

151




A. Trautman Chapter 6

The first of these has been shown above to follow from cor-
respondence with Newtonian theory; the other two involve more
details of the structure of the theory.

To treat the secular motion of planetary orbits, we
assume that the planets may be treated as test-particles in
the sun's gravitational field, and so move on geodesics.
The equations of these geodesics are conveniently found by
using the theory of the Hamilton-Jacobl equation which, for
the geodesics of a metric with components gab(x), is

3 f‘ b—-hﬁ> ™, constant. (6.86)
3 33X

We now prove two theorems which we shall require:

A, If S(x®) is a solution of (6.86), then the curves

x# = x%(s) given by

mdx® = - 3%3; (6.87)
ds ox®

are geodesic lines, s being the proper time (distance)
measured along them.
We first prove that s 1s the proper time on the curves.
For from (6.87) we have

m‘aok,%i‘%z& = 3“*’ bas Bas = m? by (6.86)
s ds x* 3x®

and hence
= 3q\°c5x°c§xb

as required. Then, to prove that the curves are geodesics,
we must show that

D 4.7:1)=
ds\ds

Now from (6.87) we have

RGN TRETR
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= a"‘b dx® %4, S, using D = dx* <,
ds ds ds

= m‘g“"gc‘* (7S)ZYS) by (6.87)

= O  py (6.86)

which completes the proof.
B. If S(a,x),for some range of a continuous parameter a,
is a famlly of solutions of (6.86), then

25 =b b constant,
Bl

is a first integral of the geodesic equation.

We have to prove that along a geodesic, 33(%% =0, Now

4(1;) = ¥Ss dx°
ds 2x%3a ds

= 3, Laek3s by (6.87)
a0 m(‘:} Ix® y

]

1 }.( 3‘1‘%5
2m dal ax®

= O by (6.86)
which completes the proof.

Another result, which we shall not require here but
which is of the same type as these, 1s that if‘ga is a Killing
vector field, then gadxa/ds = a, const., 1s a first integral
of the geodesic equation. For, along a geodesic,
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(o) = g ()

:(ngq)éL Cblb + gc\D Qg___.q
ds ds ds ds

= O

since the first term vanishes because of Killing's equations
and the second term by the geodesic equation.

We now apply this to the theory of planetary orbits.
Assuming the sum to be spherically symmetric, its fleld is
given by the Schwarzschild metric, which in units with ¢ = 1

is
s 2 _ 2 2 2
dt=(1-2) i ~ drp et enteddD 6 g0
T

where M is the mass of the sun., This follows directly from
the assumptions of empty space (Rab = 0) and spherical sym-

metry. The Hamilton-Jacobi equation (6.86) for this metric
is

(-4 (G - 108 Rl e

The coocrdinates ¢ and t are cyclic, i.e. do not occur in the
coefficients in (6.89), and hence they occur linearly with
constant coefficients in the solution for S. Further, by

the spherical symmetry of the problem the orbits will be plane.
We consider those orbits lying in the plane e = /2. S now
has the form

S=—~Et +0¢ +W (7T, E) (6.90)

where E and J are parameters, and substitution into (6.89)
gives for W the equation

(l - 24M M + {E‘—-(m‘u;;)(‘— &%ﬁth (6.9}) |

where in taking the square root we have arbitrarily chdsen
the positive sign for convenience. Now by theorem B above,
since J is a continuous parameter in (6.90), 3S/3J = const
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is a first integral of the geodesic equation, and by (6.90)
this becomes

¢=‘?—g—\3:/+ consl. (6.92)

From (6.91),

VW = T {E " +J -—ﬂ{M)g
3T ar (6.93)
If we integrate this and put it into (6.92) we have
J_dr ’ (6.91)
2 '5 'y .
{E (L)1

Now consider a Newtonian mechanics problem of a particle
of mass mina spherically symmetric potential V(r). Use
spherical polar coordinates (r,e,¢$) and consider the orbit
in plane © = W/2. The energy and angular momentum integrals
are then

tm {(ﬁ%‘)lﬂ- T d&%)l} + Vi = €, constanl

and

r*dd =3, constant
ar

which integrate to give

= ( Tde
?S J r‘(1m€~1w\/—j7r‘)"l ) (6.95)

Comparing this with (6.94) we see that (6.94) and (6.95)
are identical if

2me = EXm>, Viry = J{;\_\’\___ % (6.96)

We' have thus reduced the problem to one of Newtonian mechanics
with a potential given by (6.96). The term -kMm/r in V{(r) is
Just the Newtonilan gravitational potential, for which the
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planetary orbits are ellipses. The other term in V(r) is
very small, and has the effect of producing a secular preces-
sion of the perihelion of magnitude

aé¢ = _61kM

ca(i-eY)

radians per revolution, where we have reinserted the velocity
of light ¢, and

M is the mass of the sun,

k the Newtonian gravitational constant
a the semi-major axis of the orbit,

e the eccentricity of the orbit.

The deflection of light by the sun may formally be ob-
tained by putting m = 0 in (6.94). For a light ray which
passes the sun at a distance\f from its center, we find a
deflection of magnitude :

For an account of the observational data on the experimental
tests, see the references at the end of this chapter. For
the perihellon precession of Mercury it is found that after
allowing for the perturbations of the orblt caused by the -
other planets, there remains a precession of about 43" per
century. This is in very good agreement with the precession
predicted by general relativity, but there remains the possi-
bility that some effect may have been overlooked that could
account for the precession on other grounds. The evidence
for the deflection of light by the sun is much less conclusive
as observations can only be made at a total solar eclipse and
are very difficult to make even them. Undoubtedly some ef-
fect is present, of the order of magnitude predicted by

general relativity, but it is difficult to say much more than
this.

3
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A very interesting discussion of the equivalence principle,
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red-shift and bending of light in various theories of gravi-
tation is to be found in:
A, Schild, Proc. of Int. School of Physics 'Enrico Fermi,'

Course 20, p. 69. Academic Press, N. Y. and London.
(Date unknown.)
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7. INVARIANCE PROPERTIES AND CONSERVATION LAWS

In this chapter we shall investigate the consequences

of two assumptions:

(1) that the field equations (equations of motion) of a
dynamical system can be derived from a variational
principle,

(2) that they are invarlant under some continuous group of
transformations.

But before doing so, we shall summarize some of the theory of

Lie groups of transformations.

7.1. LIE GROUPS*®
A Lie Group is a set G of elements which constitute
(i) a group
(11) a differentiable manifold

and 1s such that the mapping

GxG@s(ab)—>ab'ea |

defined using the group law of composition, is differentiable
with respect to the differentiable manifold structure. This
last condition relates the otherwise independent structures
we have imposed on G. In the following we shall denote the
set of differentiable vector fields by x.
With any a €G we can assoclate two mappings of G onto G:
G2x —>ra(x) = xa€QG, called right translation by a,

and .
Gax-—-»la(x) = ‘ax€ G, called left translation by a.

¥ This secbion and the next are based on 8. Kobayashi and K.

Nomizu, Foundations of Differential Geometry (Interscience 1963).
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From the axioms of G given above we see that these mappings
are diffeomorphisms, and we note that

farlp=ree , Lot 1= 1. (7.1)

Given any vector field KEEX we may drag it along by
r, and Ia to form r A, laAeSX. Ir r.A =14 (or laA = A) for

. all a € G, we may say that B is right (left) invariant
respectively. We now prove:
Theorem 1

There is a (1,1) correspondence between right invariant
vector fields on G and tangent vectors at the unit element e
of G. Further, these right invariant vector fieldson ¢ form

a Lie Algebra Cﬁ with respect to the commutator [X,B].
Proof

Let Ta(G) be the tangent space to G at age G, and let
Kee Te(G). Define

-3

T.(&)2 R = r R, (7.2)

Then if feJ ), where & denotes the set of differentiable func-~

tions ofa, - -
Y'hA,,(mc)= A°_<{.'l‘b)

:
.
:
§
%
.
.
:
:
:
§
:

= rhe(Fery) vy (7.2

i

Aelfeor,or)

il

i

Re (e Fab) by (7.1)

rab A (F)

i

U

A‘b(‘r) by (7.2)

and so Ka is right invariant. But if two right invariant
vector fields Ka and ﬁ; are such that Ké = 3;, they are equal
everywhere, for
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by definition of right invariance

Hence every right invariant vector field can be obtained from

its value at e in this manner. This proves the first part
of the theorem.

To prove the second part we merely have to show that if
K, giare right invariant, so is [K,E]. But

rR[A BI¢)

ra R (B(5) - ra B (Rp)

= KRB — BAG)  as rA=A nB-8

;ta

W
M

RED

This completes the proof.

Because of this theorem the elements of O} may be
considered either as right invariant vector fields or as
elements of Te(G), and we see that the dimension of the vector

space q} is the same as the dimension of the manifold G, say
n.

Let {E}}, p=1,2,---,n be a basis of gﬁ. Then as
[ﬁr,gy]s q?, there exist constants cﬁ,, called the structure
constants of G with respect to the basis {EP}, such that

[EwE) = ¢ [F (7.3)

using the summation convention. From the antisymmetry of the

Lie bracket and the Jacobi identity, they satisfy the rela-
tions .

Ci»_;"'cf i ! =0

vReoo) c[)\vcv]f - (7.4)

and they can be shown to determine the group to within topo-
logical differences. :

Let us now consider the one-parameter local group'Gl

of diffeomorphisms ¢% generated by any KeX s 80 that if fe 9,
peG,
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A ) = j‘,;f(qbt(;,)))f:o (7.5)

We prove:
Lemma 1
If h is a diffeomorphism of G—G and Re X generates

@ , then hk generates h-¢%Ah_l.
Proof

We have to show that for any feky,

S He g k)], = (WD), ()
But LHS. = ?ﬁ ?-h«égh"qﬂ}t:o
= 5 R )
= Rprp (k') by (15)

= “Kr”)

which completesg the procf.

% Now 1let Ae(% and consider the curve in G through e
defined by

ag= b, (e). (7.6)
§ Take h = ry in the above lemma. Then it tells us that T, i
. s s

% generates ra80¢%°ras. But as Ae?ﬁ, raSA = A, and we already
f know that K'generates a unique Gl of diffeomorphisms, namely
¢t° So

-

Y.("sgsé‘tw Tq,—: ¢t

which gilves Ty, °¢{ = ¢( “Ta, . (7.7)
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Apply this at e. We have
(&) = as = &_(e)

and so ras°¢‘f(e)——— Fa,(ay) = ay Qg

t

¢‘l‘_ ° 565 (C)

and ¢£° rq3(e)
@ £e5 () I’j the avioms of a Gy

< W by (7.6),

(7.7) then gives Ay Qg = Gy, (7.8)

so that the curve a_ is 2 one-parameter subgroup of G. Note
that similarity of

Gt Qs = Gi,g and ¢f_ °¢g = ¢t+s

is deceptive, as the former uses the group law of composition
while the latter uses composition of functions.-

We shall now leave the general theory of Lie Groups
and specialize to Lie Groups of transformations.

7.2. LIE GROUPS OF TRANSFORMATIONS

Let X be a differentiable manifold and & be a Lie Group,
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with a composition 1 defined between X and G such that
GxX 2 (a,p)— alpe X

is a differentiable mapping of GxX into X and satisfies the
following axioms:

allbrp) = ab.i_p (7.9

elp=p (7.10)

where a,b € G, pe X and e is the unit element of G. Then G
18 called a Lie Group of Transformations of X.

We shall assume that G acts effectively on X, 1.e.
a lp=p for all peX if and only if a = e.

Now take any Kéoji and construct the Gl of diffeomor-
phisms ¢t generated by E. Pput a, = 9$t(e), as in the previous

secic(ion, and define a one-parameter set bt of diffeomorphisms
of by

Xap—h(p=a,Lp €X.

Then:
(1) h(p) = elp= p by (7.10)
(2) hh () = &y Llas L p)
= Q4G5 L P by (7.9)
Ay, L P by (7.8).

= h,., ).

tes

Hence ht is a one-parameter group of diffeomorphisms of X »

-

and it induces a differentiable vector field & on X, such
that if f is a differentiable function on X,
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. d
£ & Flp], o (7.11)

‘Tet X now be the set of differentiable vector fields onX .
Then the following theorem can be proved:
Theorem 2 " -

The mapping A— % defined above 1is a one-to-one homo-
morphism of q} into X, these two sets being considered as
Lie algebras.

For proof, see, for example, Nomizu and Kobayashi.
Since X is infinite-dimensional and q? finite-dimensional,
we see that the mappling must be into rather than onto. The

bngd -
% . constructed in this way (by taking for A the r elements of
a basis {EY} of , where r is the dimension of G), span an

r-dimensional Lie subalgebra ofX , and

where the cgy are the structure constants of G with respect
to the basis Sgr}. To every set of scalars cl, p= 1,2,...,r
there corresponds a local Gl of diffeomorphisms of X, namely
that generated by c”é}, which is a subgroup of the full Lie

group of transformations.

7.3. INFINITESIMAL COORDINATE TRANSFORMATIONS
Let h be a diffeomorphism of X and let {x‘} be a coor-
dinate system on X, either locally or globally defined. Re-

membering that p—=1x*(p)} is a mapping of X into Rn, the n=-
dimensional Euclidean space, we may define a new coordinate

system {x“? on ¥ by
x*(p) = hx*(p = (x=+ K')(p)

hx* denoting the function obtained from x* by dragging along

by h. In this way we may associate a coordinate transforma-

tion on X with any diffeomorphism of X. -
Now take a Gl of diffeomorphisms ht of X, and let % be
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the vector field on X induced by the G Take the coordinate
transformation

X (p) = x*(p)= h, X*(p) (7.12)

induced by ht and expand it to first order for small t, say
t =€, by Taylor's Theorem:

x*" = x* 4 e i—: htx“(P)'f,
) ; (7.13)
= X" +€g x"oht(pﬂt_

But hg “tp) = h_¢(p) by the axioms of a G
can then be written as

1+ Equation (7.13)

VP = x(p) - et hpl,

#

X *(p) - € §,(x*) by (7.11)

TP - € £7(p)

where Q" the components of g, are given as usual by

£ = £(x*). So

VL™ X%~ € %«.
This 18 called an infinitesimal coordinate transformation.
We shall put §*¥x™ = - eg™and write it as

X X oy oy S*x"‘

7.4, THE VARIATIONAL PRINCIPLE
We assume that the description of a physical system 1is
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given completely by a system of functions YA(x), where x

stands for the local coordinates defined on an n-dimensional
differentiable manifold X, called the base space.

Examples

(1) Classical Mechanics: A system with N degrees of
freedom is described completely by N generalized
coordinates ql...qN, each g being a function of

time. 1In this case the base space is simply the
time line.

(1i) Quantum Mechanics: The description of the same
physical system is conveyed by a state vector
“P=‘P(q1,...qN,t) and X is an (N + 1) dimensional

differentiable manifold.

(111) Classical Field Theory: In this case the YA are

components of a field or fields and X is the U~
dimenslonal space~time. It is sometimes convenient
to 1lnclude the metric tensor components gab with

the field variables YA even if the g, are not
dynamical variables.

We assume that the field equations can be derived
from the principle of stationary action

Sw=o0

where W= [L‘b"
n

and L. = L(X,YA‘YAA)yA,Ab)

The region of integration Q is that region of R™ which is
the map of the domain of X over which the Y,'s are defined.
For the moment L is not specified as a scalir or a scalar
density ete., but is perfectly general. For simplicity we
write -

L= LCxs yo)
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and we assume that variations of YA and of YA a vanish on the
5
boundary FQ of ) i.e.

SYAlrﬂ"g\fA,alm: 0. (7.14)

By definition of §W, we obtaln

Cw =£L(x;y+$y>c{x - I,[L(“YHX
W CaN (7.15)
- (UG a1 &
where SwW e LA o oL _ d.0k + dady, oL

SYA B aYA a)/A,o- a\fﬂ,ab )

Also from the definition of §W, the functions T depend
linearly on SYA and SYA a and hence, on converting the diver-
>

gence in (7.15) to an integral over the surface Fn, 1t is
olear that it makes no contribution to S$W by virtue of (7.14).
Hence

SW = fU‘sym -0

implies

A= 0

provided all the YA'S are dynamical variables.

We are now free to perform cocrdinate transformations
in X, or transformations of the YA'S themselves. Such trans-

formations do not alter the physical system but rather pro-
vide different descriptions of the same physical system and
are generically termed gauge transformations. Gauge trans-
formations include as speclal cases

(1) Coordinate transformations

T L/

(2) Transformations of the type
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y,\'(x') = YA (x ;y(x))

e.g. Ayp (D = A _(X) %‘i:,

(3) The familiar gauge transformation of electromagnetic
theory viz.

X“':x“ ond A‘i(\(')‘-‘- Aq(ﬂ +QQI,

In a new gauge the Lagranglan is written as L'(x';y'(x'))
and we assume that new field equations are obtained upon
varying the new action i

W' = S L' X';y”(x‘»dx’.
n.l

The prime on L' indicates that, in general, its form is dif-
ferent from that of L. We can derive sufficient conditions
for the compatibility of the two descriptions, i.e. sufficient
conditions which ensure that the solutions of the field equa~
tions derived from L when transformed to the new gauge are
the same as those solutions of the field equations derived
from L'.

We have the action

wl:_ §Ll(xl;y,(xo)aX/
Sl,'

and the sufficlent conditions for compatibility are that there
exist functions Q% such that

w' = §[L(x;)/($<)) - BQQ“(w,f(xS)] dy
(e}
Proof. S\:\/I = SW . - ? SQQ n&dS,
E— Fa
and if Q" = Q“(h}’k ) Ya,a)  only , then
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i
O

{ Sa*n.ds

by (7.14). Hence SW =S w/’

But for arbitrary SYA, SW = 0 implies and is implied by LA =
0, and also §W' = 0 implies and is implied by L'A = 0, and

these imply that LA = 0 implies and is implied by L'A = 0.

This proof does not hold as a necessary condition.
7 In general, gauge transformations change the form of
5 the equations of motion. Those gauge transformations which
leave the form of the equations of motion unaltered are
called symmetry transformations. This simply means that

L"(x;y(x))a L'A(x;y(xﬂA

This condition is implied by the sufficient condition that
the form of the Lagrangian be unchanged i.e.

L,(‘ Sy(m = L, (x ',Y(Y\),

E
.

We shall assume that the symmetry transformations form a
continuous group and henceforth we shall restrict our
considerations to infinitesimal symmetry transformations.

We now write an infinitesimal coordinate transformation
in the form

Y& x4 S

where ¥yt g g*

and we define S*YA and §YA by the following equations:
rr, *
Jil) =y 09+ $y
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3l

and SyA }Ip:(x)“jﬁr()d

= yk'(X')— Ve () + }/A’(x) - y;(xﬁ

1

P P

where we have neglected terms of or'dersz. We also define
$L by

SL = L(X')y’m) - L,(X;ny))

and we note that § and partial differentiation commute, i.e.

§}/A’0_ = da §)IA.

Clearly, for a pure dragging along

§:\]A = §YA .

The sufficient conditions for compatibility between
systems differing by a symmetry transformation can be stated

thus. There exist functions §Qa of order € such that
y L(x’;j//(x'))c[x' = S[L(x;ycx)) - BG_E:Q“CX;}(CX))JJX
o L

where we can regard 30% as the definition of the function Q%
for the speclal case of symmetry transformations. Alterna-
tively, we may write these conditions as

.g' L(\L’;y’(x’))d\L’- ‘g;[Lﬁx;jcn)'—aaEQqJA\L: o,
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By aTrelabeling of x' to x, we obtain

3‘[ L(x~))/'(x))_ L(X))/Lx)) + BQ-S:O:‘]CW -+ fL S¥x°‘nac(3 =0

where S¥x® NadS is the volume between Q' and ) as indicated
in the diagram. Hence we obtain

§[§L+3m(§QQ+LS*X“)]d!sO (7.16)
Q
and () being arbitrary, we arrive at
SL o +3.(Fa*+Ls™) =0 (7.17)
Now SL - LCI‘)Y+§3) - L(x-,)/)

Sy St o Syt 2 3
9Ya yA YAP Jra ¥ ByA,Qb Jaab

U

LA SjA + 3, [( bay )ng 3 S)/A BJ

From (7.17) we obtain the basic identity

LA§:{A+30.§tQ =0 (7'18) :
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_ ~, 3L = =
where S+ = l—( S}:Q‘ 5@5}}:“37/\,;,]+ S Q_‘L + L S*\Cq_

If all the YA'S are dynamical variables then

LY =0

and we get a conservation law. Also,if §)“ =0,

Noether Theorem

Case I. Suppose the symmetry group is an r-dimensional Lie
group of transformations. Then we can write

and

where these equations can be regarded as definitions of Tni

and tia etc. In these circumstances the basic identity
becomes

O

i

: A a
ec(L Tae +9at %)
for any gi, and hence

.

LA?A'L +gat¢t z O

ir LA = 0, we get r conservation laws

B&t‘Z‘:O N

Case II. Suppose the symmetry transformations constitute a
group whose "parameters™ are s arbitrary functions of x&.
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Such a group is usually called an infinite group.
We assume that the infini-
tesimal symmetry transformation of fA is

_ . .
Sya = €200 XA-) mela Y, R s

(e.g. in electromagnetic theory'—S"Aa = -€,a) and we obtain

similar equations for St% etc. On substituting in the

basic ldentity we get an equation involving &; €,a; &,ab etc.
The coefficients of these terms must vanish separately owing
to their independent arbitrariness. If we choose & and its
derivatives such that they vanish on FQ, then by (7.16)

0= g LA§yAdi = xg LA(EJXﬂ - Ej)“ ymapdx
- ggj):LAYA.—’r (LAjAA'>a]CW
Q J "

or, since €Jis arbitrary

A LYVES - .

L» jAJ -+ (L. Aj))Q.. =0 )=1,2,~",5. (7'19)
These 8 differential identities connecting the field equa-
tions are called the Generalized Bianchi Identities. They
imply that the field equations are not independent and this
gives rise to difficulties when attempting to formulate the
Cauchy problem.

Example: Assume

Lo :Lixvjk)]Ap);
then 3
C /L 2L I
LA = %!: - Ba( M)r‘ -y N y%)q’b"’(l -CICH—)
YA éjkgx \ wohue hermg
Suppose we wish to impose Cauchy data on the surface
Y°= constant

A
We can decompose L7 so as to exhibit v thus
b )B,oo’
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J*L

1A e 2
ayA,oayB,O

Y800 + (terms not involving‘YB,OOX

(7.20)

. 2 . . .
If the matrix o L/QXA,oqu,o is singular, then, given ;A
and its time derivative on the surface we cannot solve for

fB,oo'

Now, from the Generalized Bianchi ldentities, the
coefficlent of 3rd derivatives of Ya must vanish, i.e.

3L ¢
BY’*:‘*BY 8,b

for any yA' Since yé,abc is symmetric in a, b and c we

need only consider that part of this equation which is
symmetric in a, b and ¢. On putting

AJ'YB,abc =0

a=b=c=0

we obtain 3 L 6

P j":" 3)59 A:’

= Q

.

Whenever there exist non-zero XOAJ‘S such that this equation
is valid, the matrix in question is singular and the Cauchy
problem cannot be formulated as usual.

Furthermore the expression Y°AJL s calculated from
(7.20) does not contain time derivatives of )k and hence
the equations

1 LA=0,

which are valid in view of the field equations, act as sub-
sidiary or constraint equations on the Cauchy data ]A and

A,o0°
f If the infinite group of gauge transformations possesses
a Lie subgroup then we obtain so-called strong conservation
laws 1.e. conservation laws which are valid whether Fhe
fleld equations are satisfied or not. They may be demonstra-
ted by writing

el0) = €$9, tx)
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where the al are the numerical parameters of the Lie group
and consequently the expressions for § A and §t@ assume the
simplified form

§y‘\ = E.k (QJLXAJ - ;agj(qu-)
J
and

St *-git

+

On substituting these expressions in the basic iden-
tity (7.18) we obtain

N (89 Wy —2a8di 8 ) +edtt =0 (7.01)

and the el, being arbitrary, may be ignored. Multiplying
the generalized Bianchi identities (7.19) by 2% yields
A e ) G - .22
L i)i jAJ + EJ;(LA‘[ Aj),a,_’—’ o 7 )

and subtracting (7.22) from (7.21) gives us the strong con-
servation laws

d.(4% - LA X“AJ- < {) =0 (7.23)

Note that these conservation laws hold independently of the
field equations

A= o,

Weak congervation laws are those which hold only as a con-
sequence of the fileld equations.
If we write equations (7.22) as

d, ® .= o0 Ll e

for an r-parameter subgroup, then there exist bivectors Uabi

which are skew symmetrie in a and b, such that
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:\_ o.b
@L‘U Ob

b

The U® i’s are sometimes called superpotentials.

Consequently the form of tai (which may be the energy-

momentum or current of a physical system) for theories ad-
mitting infinite transformations which contain a Lie sub-
group can be written as

P Ua_l:»

t

bt LIA Xijgj;..

7.5. CONSERVATION LAWS IN RIEMANNIAN SPACE-TIME

For the moment we shall not regard the metric tensor
8., a5 2 dynamical variable but rather as a description of

the background space upon which the physical system is im-
posed. This does not preclude variations of the action with
respect to the metric but such variations will not give rise
to field equations. .

We choose as our variables e the metric tensor Eap

a set of arbitrary field variables H}(P = 1...N), and a

function 2% (a = 0,1,2,3) which describes the world line of
a single particle. The action is assumed to be of the form

we (Ldv . (lLr Sastea)ds)dy
£2 n

where L = L(gab,WP,'¢r,a) is assumed to be a scalar density,
and

A= A% 2%)

is assumed to be a scalar. The integral of AS$ (z-x) is
taken over the world line of the particle and since the
delta function is a scalar density, £ is also a scalar den-
sity and has, therefore, the same form in all coordinate
systems.

In this case, therefore, the infinite gauge group is
the group of coordinate transformations. There may well be
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‘ more gauge groups but we restrict our attention to this
particular case.
We write the infinitesimal coordinate transformation

as

and we deduce immediately that

. <

‘ It can be readily shown that if Vis a tensor field, the Lie
. derivative of Pcan be written as

* ﬁ\#r:\l)h&gq"ljraﬂgwfga)b
¢

where the Fms" are constants.
We now perform all the necessary variations of the
action and for simplicity, introduce the following notation

-2 S—\ﬁ/ - T‘l‘-” - a tensor density,
5, | S -
sv, =4

and S
dW
Sz " A

a ¢

The equations

A= 0
are the field equations for \\’r’, and

A,=0

are the equations of motion of the particle. It should be
emphasized again that the variation with respect to 8.0 does
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not give rise to field equations since the 8., are not dy-

namical variables but have been included in L merely to
ensure that L has the same form in all coordinate systems.

In these circumstances it can be shown that the basic
identity (7.18) assumes the following form

_%Tab%jwr J(*égll»y_ jZAa‘EqSCx—‘Z)ds + 1™

—~ Sw ds S(Y”Z)d*‘e = O
2o ds

(7.24)

where

oL
=Ly 5y AW

and

DA D3 A a
P:FA"ELZ)Z + )¢

with the dot denoting differentiation with respect to s.
From the basic identity (7.24) it is possible to
obtain the generalized Bianchi identities which are

r L r w )
VL(TCL‘H L Fr’ \P5)+I \Ur,«fﬂ Sh-Dds =0, (7.25)
If the field equations forqg are satisfied i.e.
=0
and whenever Tab is covariantly conserved i.e.
b

V\T,” = 0

then it follows automatically from (7.25) that

A W = 0.

Hence the equations of motion are satisfied if and only if
the energy-momentum is covariantly conserved.
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ab . R
is always covariantly con-

In general relativity T
served as a consequence of the Einstein field equations and
the contracted Bianchi identiflies and consequently the equa-
tions of motion in general relativity emerge automatically
from the field equations.

As a speclal case we consider only a system of flelds

Q

Since L is a scalar density, we have

O = iL-’ga(qu)

!
|
1 W = § L dyx
; L oL «
=;3‘:°}\34, ! ﬂrxu’k +ﬂr,a£wm ~3a(LS ).

Partial differentiation commutes with Lie differentiation
and hence this becomes

= —%Tabgéo‘h"‘l_‘f{wk +3a()§ﬂ%a£w\r‘ - L';'q)n

This equation contains §%, . , %%, and & and, because of
the arbitrariness of ¢ and 1ts derivatives the coefficients
of these terms must vanish separately provided we symmetrize
over b and c. This gives us three sets of equations corres-

E ponding to the coefficients of §%,(, , §%, and g“ respec-
!
f

tively,
SawC)ao where So_bc—. ;%%'CFMSN’S (7.26a)
T t, b 9.5tk L"Fhf)’\?s (7.26b)

where ] L L

| t <= g LS°,

(7.26b")

b . .
and ta can be recognized as the canonical energy-momentum

tensor densify. And finally

(7.26¢)

V, Tab= LV + (LY R )
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which indicates that if the field equations are satisfied
(LY = 0), then Tab is covariantly conserved (VlTab = 0),

If we assume that the field equations are satisfied
and from (7.26b) calculate the covariant divergence of

tab, then, using the Ricei identity and the fact that SabC
is skew symmetric in b and ¢, We obtain
h bc C{
Vb, = ST R (7.27)
b

In special relativity Ta and tab differ only by a
curl, viz V:Sabc as 1s clear from (7.26b) and the divergences
of both Tab and gab vanish., 1In curved space however, the
divergence of ta is not zero but is given by (7.27) and hence
Tab may be regarded as a better description of the energy~

momentum of a physical system in curved space.
The equation

Y7B'TQL = 0

can be written

=0

VET&{O = BLTQL + Tac r c’sb “ch r’cfb —Tabr'cc

b

the last term arising because Tab is a tensor density.

Since the affine connection is symmetric this equation re-
duces to )

QLT;L— T; LTLFB =0

which 1s not a true conservation law in that it is not an
ordinary divergence which, when integrated over all space,
can be reduced to a surface integral.

If there exists a Killing vector field § 1i.e.

{%a}o = Vai[g-F Vlaia =0
5

and the field equations are satisfied, then we have
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a &
d.tT= v.th =0 (7.28)

where

‘tq = AE\\[TL:“’{’IL\’ - LEQ

is the canonical energy-momentum vector density. Furthermore,
if

— b
T = \ng
then
Yy, T V. T
(7.29a)
since T? is a vector density, and
V2 (VQT&\,)EbA— T“L’ VO‘ELO (7.29b)

because Tab is covariantly conserved and symmetric. Also,
from equation (7.26b), if LY = 0 then

T - to +3L(zcsco~b>

and the conservation laws (7.28) and (7.29) are equivalent

in view of the l-dimensional generalization of Gauss's theorem.
In the case of special relativity i.e. Minkowski space

and cartesian coordinates, there exist 10 Killing vectors.

If we choose the Killing vectors corresponding to Lorentz

transformations then,

where
Wal, = = WOpa = Conslant
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and, on substituting the above expression for ia in t2

, we
obtain

'éQ: %jbcqwc‘a

where a.

%cha = Xﬁbéqc] + S[ be]

which 1s the expression corresponding to total angular momen-
tum. The conservation law (7.28) implies

o

aa\ j‘ac =0

which 1s the conservation law of angular momentum.

7.6. CONSERVATION LAWS IN GENERAL RELATIVITY

We choose an action corresponding to the gravitational
field to be of the form

Wy - g G(‘}d,?m&,c;?a&,cd)dy‘ (7.30)

and we assume that G is a scalar density which is invariant
in form and this ensures the tensorial character of the field
equations and their compatibility.

Suppose, however, that G is linear in gab ed and that
3

aG/agab,cd 18 independent of gab,c (this is satisfied if
G ~{-g R), then replacing G by

9 Q
G\‘“acl(&gd’d ?o\-‘o,c

leads to the same field equations since the extra term is a
divergence and the whole expression is independent of 8.1 od’
3

but if G is a scalar density, the whole expression is not a
scalar density.

We shall assume however that G is a scalar density and
we introduce the following definition:
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_l - ab Sw
lewr (3 = 33&3
G PR 3G
=2 .28 L 2E L (7.3
P9k T gy T Sgu

g =0

where Gab is a tensor density.

Since G is a scalar density we have the identity
£a-GsY.
g

which can be written in the form

0= -z ™ Rgu +at® (7.32)

when we integrate, by parts, the expansion
%Q: Agd’g}d’—{' Bwi}dc’* rd]{jwﬁﬂl.

On integrating (7,32) over a region Q and choosing
§= 0 on FQ, we obtain

ab
SG Ve§,dy= O (7.33)
ﬂ .
where we have used

%%ﬁb‘: Vmg‘o*" Vbia_s

and integrating (7.33) by parts yields
oy —
((,q*) g, d = o
Kol
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which Implies the generalized Bianchi identity

v, q“’:o (7.384)

since za is arbitrary. 1In the special case when
V=g K
G-- i
i

we obtaln

a'o _ E a.;b | Q,LR
G 167 <K 2 % )
and (7.34) becomes the usual contracted Bianchi identity

: Y, (R - L @)= 0.

The 1dentity (7.34) is the same as that obtained in the
general case described earlier, viz.

LAY +<LAXqu)?a'—:O

A)

with Gab standing for LA, and therefore we have difficulty
in solving the Cauchy problem. Some of the field equations
are independent of g and these field equations must be

ab,o00
satisfied by the Cauchy data before the Cauchy problem is
solved. In this case ¢%° does not contain 8ab .00 and the
constraint 4
QO.O:: o

(being a system of 4 nonlinear partial differvential equations
which must be solved before attempting the Cauchy problem),
gives an indication of the complexity of the Cauchy problem
in general relativity. We may note that if

o= conslant

is the Cauchy surface, then the constraint equations can be
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expressed covariantly as

We now consider matter in the presence of a gravita-
tional field and we add a corresponding matter term W to the
action. On varying with respect to g we obtain

ab
Y (We +W)= - & “g—l*r"“b—o
S(éd’ §+ - lé’ITG{ 2 -
and the field equations thus are
akb ab
@7 = - 83T (7.35)
Equations (7.34) and (7.35) imply
7T - 0, (7.36)
i.e. Tab ié covariantly conserved as a consequence of the

gravitational field equations alone, whereas in special rela-
tivity (7.36) holds only if the matter field equations are
satisfied..

From equations (7.32) and (7.34) we obtaln the strong
conservation law for gravitation

! Va<‘8]—r\6“§b+’zj°-)=0 (7.37)

and since the expression in the bracket 1s a vector density,

the covariant derivative could equally well be replaced by a
derivative. If we use the field equations and replace Gab by

Tab in (7.37) we obtain a conservation law for matter and
gravitation viz.

d (T*+7e) = 0

o

where
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and Ba and Vg are equivalent.

Example: Einstein's Theory of Gravitation
We put

Q:——é‘,ﬁ\[:%\g (({:C’: 'l)

and obtain

G ab: \r_‘gv (;Ro.b = %T»’o K)

In this case the basic identity becomes

—(Kmb— %?&R)VQEL—&%[R%—%?“R] g, = O

which 1s equivalent to equation (7.32). It follows that we
can choose the equation

Tos g g (R -4 §URIS,

since y-g is covariantly conserved, and on using the field
equations (7.35) we obtain :

T O~+ ’C°’= O.

This equation may be interpreted to mean that the gravitational
energy annihilates the matter energy so that the total current
of energy and momentum 1s zero.

However, a transformation of‘za of the form

6

7% T+ V4 (7.38)
where d 4
Ve -yt
preserves c)a{TQ—f'[): o
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but in this case
T+ T + 0.

The function

Ve = V(9 e s 5)

need not be a tensor and it is widely believed that a correct

choice of Vab could lead to a physically meaningful‘conserva—
tion law. It is believed for example that a good choice of

Vab would be one in which T*+ T* would be independent of
8ab cd and, in the special case of a Schwarzschild field,
H

the expression for total energy E, given by
£ = J~Cr°+ ) av

would reduce to me® ', with m being the mass of the Schwarz-
schild particle.
We may observe also that all identities involving the

arbltrary field %% are valid even when $ 1is not a vector

but in such a case quantities such as ©* etc. will not have
a tensorial character. For example, we may introduce U sets
of ¥'s such that, in all coordinate systems, the ¥ 's are
given by

a a

S =Sb

(%)

where b = 0,1,2,3 labels the U ¥'s,
We consider now a <% which may be either the initial
T* as defined by (7.32)or a transformed o* as defined by

’Cq’b = Tt (f(b))

The quantity €% 1is independent of the ¥ 's and is a function

187




A. Trautman Chapter 7

of Sap and its derivatives only. We call‘Zab a pseudo tensor

or energy-momentum complex.

Clearly we can obtain arbitrarily many expressions for
zab simply by exploiting the freedom in the choice of the Vab
and the 8 and this in turn leads to arbitrarily many con-
servatiod laws of a non-tensorial character. However, we
may restrict the arbitrariness somewhat by requlring that

Zab give a physically reasonable result for an isolated sys-
tem of particles generating a gravitational field.

A particularly useful choice of Vab was made by Komar
which ylelded the result

T sz Ty, (vE g

From this expression, the Mgller pseudo energy-momentum
tensor can be obtained by an appropriate choilce of T .
We have seen that the definition of energy 1ln general

relativity is extremely difficult owing to the arbitrariness

in the cholce of Vab and Za. The basic reason for this does
not lie in the peculiarities of general relativity but rather
in the special and unusual character of the gravitational
field.

Tn general, the notion of energy is closely related to
the notion of force i.e. gliven a force we can calculate work
done by the force and thus define changes in energy, butb the
notion of force cannot be readily utilized when considering
gravitational interactions. Even in Newtonian theory we cah-
not uniquely define the gravitational force acting on a body
unless we have an isolated system. When there is a strong
gravitational field acting over all space this definition 1is
impossible.

In electrodynamics, for example, the energy-momentum
tensor is constructed essentially from forces i.e. from first
derivatives of the potentials. In a field theory of gravita-
tion, if we regard the metric 8.0 as the potentials and try

to eonstruct an energy-momentum tensor from the first deriva-
tives of the gab’ we find that it is impossible to do so.

We may also present a more formal argument by a compari-—
son with special relativity where the notions of energy,
momentum and angular momentum are closely related to the
symmetry properties of Minkowski space i.e. homogenelty glves
rise to conservatlon laws of energy and momentum, and iso-
tropy to conservation of angular momentum. In Riemannian
geometry, in general, there are no symmetries and hence we
would not expect conservation laws.

However, the situation regarding conservation laws in
general relativity is not as serious as it might appear,
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since the role of conservation laws in any physical theory,
whilst often extremely convenient to the solving of certain
problems, is not indispensable.

The energy concept in general relativity can really be
made meaningful only in special cases e.g. an lisolated sys-
tem of bodies which produce a gravitational field that be-
comes weak at large distances from the bodies. In order to
formulate a meaningful conservation law in the case of a
) strong gravitational field over all space, Mgller has intro-
i duced privileged tetrad frames in space time but the physical
meaning of such tetrads is far from being clear.

For flelds which are asymptotically flat, certain asymp~-
totic symmetries do exist and one can formulate global con=-
servation laws corresponding to these symmetries. Thus far
however, the treatment of this problem has been somewhat
inelegant in that Einstein's idea of asymptotic cartesian
coordinates has been employed. A far better formulation of
the symmetries would be in terms of asymptotic Killing vec-
tors and this has not yet been done in full generality.

7.7. RELATION BETWEEN FIELD EQUATIONS AND EQUATIONS OF MOTION

We have seen from general considerations of the varia—
tional principle that if all the equations describing a
physical system follow from the variational principle, and if
the matter field equations are satisfied, i.e.

L= o

then VLT&L’= o

implies the equations of motion

A = O

and the gravitational fileld equations (7.35) imply

Y7L1'“L==C).
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Hence we infer that if the matter fileld equations and
the gravitational field equations are satisfied, then the
equations of motion are automatically implied. This implica-
tlon at first sight appears to give us more information than
than we should expect from the amount of labor expended. In
special relativity, for example, we had to vary the world
lines of the particles in order to obtain the equations of
motion. In reality, however, we vary with respect to the 10
functions g_, , but the geometry of the manifold is determined
by only 6 flUnctions among these 10. The remaining 4 functions
represent some description of the inherent freedom of coordi-
nate choice in general relativity, and the variation with
respect to these 4 functions gives us the eguations of motion.

Consider the following situation:

Suppose the metric field 8.1 is given in X, and consider the
coordinate transformation

XQ___? iak - FQC’()

where FZ is invertible, of class C”, and a 1 to 1 map of g
on@. In addition F® also satisfies

F“Im = x*

3FS
3 b

q
PR

i.e. F is the identity transformation to the first order on’
the boundary of Q2.
We define a new metrie field 8ab in the manifold by

= g 2FC A
‘341:60: Ca'c‘i(x dx* ax?b

and we consider the metric field ééb(x) which is a new metric

field 1n the same region and same coordinate system as the
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original one.
It follows from the properties of F that

g%}FQ: %“—L ! o'

Since G 1s a scalar density, one then has in the action
principle that

EQG(3LU0 ”)AY: gQ(§4(U~?dx
a a

Ifgab(x) is a solution of the field equations i.e. if CIN
makes the action an extreme, then so does Eab(x), and 8ab
and éab are virtually indistinguishable. One is simply the

dragged along version of the other.
Suppose now we take a fixed curve c:

¥*- 24

in 2 and consider a combined action of the form

ngl - gcls
beX [

Let gab(x) be a field rendering YGdX stationary. On re-
— Ee®
placing gab by gab(x) this integral does not change but f-ds
— c
does change! Thus the change gab(x)~» gab(x) is equivalent

to a change of the curve ¢ i.e.

Z 82— Z (W

where

Hence we see that varying with respect to the 10 CIE is

equivalent to varying both the geometry and the world lines.
Because of the relation between the field equations and

the equations of motion in general relativity it 1s not pos=-

sible, even in principle, to solve in a finite number of
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steps, the problem of motion in general relativity. 1In
electrodynamics, for example, if we have a system of charges
then we can write down Maxwell's equations for the field and
the Lorentz equation for the motion of the charges. If we
assume arbitrary motion, we can solve the field equations and
insert the solutions into the Lorentz equation and find the
world lines precisely. In general relativity arbitrary
motions cannot be assumed ‘since the motions are determined by
field equations.

An approximate procedure for determining the world lines
was developed by Einstein, Infeld and Hoffmann. In this
procedure all functions occurring in the field equations are
written as an expansion in c— the velocity of light, e.g.

B (o vt ) = Bty )

- z 5’; Bt ).

hzo

The series expressions are inserted in the field equations
and all coefficients of separate powers of ¢ are equated to
zero. This ylelds an infinite system of equations which may
be solved step by step; the equations of motion appear as
integrability conditions for each successive equation. The
process converges rapidly for slow moving bodies but cannot
be applied to radiative problems.

7.8. THE MOTION OF PARTICLES IN A GIVEN FIELD
We shall assume here that the particles do not influence

the field i.e. they are test particles. The action integral
for a single particle in a field \k\ is gilven by

W= b AU 19ds (7.39)

where A is a scalar of invariant form and the integral is
evaluated over a portion of the world line of the particle c,
parametrized by its length s. As an example, A for a charged
particle in an electromagnetic field is given by

- < °a
A= -me - A

We could easily generalize A.to
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A': A(\l’r‘\%)‘;a)%al,)y:&)

but shall not do so here. g
We may remark here that since X~ is a unit vector,

ACde ¥2) is definea only on the unit hyperboloid in the x
space and this limited definition prevents us from differen-

tiating with respect to all the components of x. Hernce we
extend.jlc)ff the unit hyperboloid by considering a more

general vector u® and the corresponding /&(x,ua). This

extension is by no means unique.

If now we wish to vary the world line of the particle
then clearly we cannot retain the parameter s since, in
general, a neighboring world line with the same endpoints as
the original would have different length. Thus we consider
a new parameter A whose values corresponding to the endpoints
of the world lines are kl and AZ‘ Equation (7.39) thus
becomes %

(7 d¥s s 4oy 4
W= j)‘A(‘h‘ 7 d—;\d—;d)«, (7.40)
and if we write

L(X,X/d) = A (\Lr, d,};\“/:{!_;)j_i

where

then (7.40) is recognized as g familiar expression in the
calculus of variations, and the Euler-Lagrange equations are

d /2ty oL '
a5 55 -0 (7.52)
or
49 dsy 5L
4 é‘xm(A' aﬂ - 3% Bt =0, (7.42)

We extend A as described above,and note that having calculated
ah/3u?; (on substituting %% rfor u?), the symbold A /yu? really
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meansaA/aua (#r, ia), so that we can write (7.42) as
4 [(A > b e ol QA ds (7.43)
Y - S ud 7 éﬂ#rﬂ:o :
Here we have used
ds
- 4y c‘\(
dd \/é"‘ﬂ A da

and hence

() Xt Xt g
R A P LT

Moreover, we have chosen a coordinate system in which the
affine connection vanishes and 8.b is a constant so that the

only x dependence occurs in rr.
However, since our final equation of motion must be a
vector equation, the general form of (7.43) is

D My,a AT A
= JS{/CA_— i"wh'a—u“] \711(\,_0 (7.44)

a

The expression within the square bracket is called the
generalized momentum Py and

2L
Pa = Spe (7.45)

From the assumption that Ais a scalar we may write

Q
7 A0 u)= 573 A
g
and from the assumption that 1t is of invariant form this

becomes
qé
}:q’v +%[ia¥\ua = g A V4 +5 aubva“

il

where we have replacedd a by Va since A is a scalar. By
expressing;£ya in terms of ia we obtain
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A A
(= Bev, oy
(7.46)

In order to arrive at conservation laws, we first con-
struct the scalar Pa§? and hence

d DPa .4 Dg*
s (F*t‘:ﬂ = s 5 tlPe 4
Using (7.44), (7.45), and (7.46), this equation becomes

j‘s(pai g +,;4 £1L ta (’\ e ue ‘*“u"f‘}atw 47)

where the term¥ g comes from V.B% in (7.46).
ab b

We may obtain a conservation law from (7.47) if we can
make the right-hand side vanish. We assume therefore:

(i) The equations of motion are satisfied 1.e.

A,-0

(i1) The field Zis a symmetry of \(«r i.e. ‘Fr is invari-
ant under a dragging along generated by 2, which
implies

FA
(iii) gis a Killing vector i.e.
Kgul = 0.
Hence we deduce that along the world line of the particle
P¢§m= constant.

Now consider an r-parameter Lie group of transformations
génerated by 'Za (i = 1,...7), with
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(7.48)

Assume further that all the %i's are Killing vectors and
preserve the field‘#r, i.e.

;{%=£\H=O

Then, if we define
Q
I G
it can be shown that
1]
Teepyt= % pu (7.49)

where in general the Poisson bracket {u,v} is defined by

du 3__! a_u R .
{u,U} = a_")a dye T oye BPQ‘

When we quantize a classical system the Poisson brackets go
over into commutators and from equations (7.48) and (7.49)
we can see that in these circumstances an isomorphism is
established between the Lie algebra of the constants of mo-
tion by and the Lie algebra of the group of symmetries.

7.9. THE CANONICAL FORMALISM FOR RELATIVISTIC PARTICLES

When attempting to quantize a physical system it is
convenient to express the classical equation of motion of the
system in Hamiltonian form. In relativity this is accom-
plished most easily by abandoning a manifestly covariant
formalism and singling out the time coordinate from the
spatial ones.

We shall show here how to reduce the equations to
canonical form without loss of covariance i.e. the time will
not play a preferred role. We choose as our Lagrangian
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L(X‘X')’: A C—{—)&
and on replacing x' by HX" we obtain

L(x,yx') = p L (x,x)

(i.e. L 1is homogeneous of degree 1 in x'), and from the Euler
identity we obtain

oL .
dye &=L (7.50)
We differentiate (7.50) with respect to x'b,obtaining
ab o, L AL
Spb b e ¥ T B
or
L e
¥t = O
Jrvowh (7.51)

which indicates that the matrix BZL/)x'abx'b is singular;

Al
we assume that its rank is 3, i.e. X 4 45 the only null vec-
tor.

Tn the circumstances, the equation

oL
Pd. = é‘;ﬂx

cannot be solved for X 'a as a function of Py and x& and,
therefore, there exists a function H(o ,x ) such that

i $e ,xb) = o. (7.52)

1
We differentiate (7.52) with respect to X b and xbe obtalning

ML
3?0_ m‘- = O (7-53)

and
ah oL a

éyo.éx"‘ht‘ v T O

(7.54)
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Comparing (7.51) and (7.53) and using the assumption that

2 fay.'b . .
the rank of °L/dx x is 3, we deduce that there exists a
function ¥Y(x,x') such that

24
oPa (7.55)

‘o
X = Y

and substituting this in (7.54) yields

2 oH

On differentiating the Euler identity with respect to xb we
get

éiL X/A—— Q‘L
dy'a dyb J xb
which, when combined with (7.56) gives
oL o
é'T‘L—*—yaxb:O.

The equations of motion can be written

’a ._é_.li.
3 x*
where
a. dpt
F d)
and hence we obtain o a&
l’ -y e
(7.57)
and la _ ELs
X = Y aP&

(7.58).
together with the constraint H = O,
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The function ¥, however, involves velocities and hence
(7.57) and (7.58) cannot be regarded as true canonical equa-
tions. It can be shown, however, that a special choice of A
(corresponding to A = s) reduces ¥ to 1.

Consider an extended A = A.(Xa,ub) and define
Y\ A
Pm(\()u)’ (A Sub U'b)u‘“ * 5(:"‘
then on the unit hyperboloid

Pal¥X) = FJha-

Now, provided that

3
A - g-ubuk—_- o)

then dd.l %%:} 40

and the system of equations may be inverted to give
QL%_L- )
ud = u Sy %/

We may now propose an explicit construction for H, viz.

Koo = 5(A - gﬁc u“)(‘}“u“uk_g ‘

1
which vanishes when we substitute 9L/3x & for P, and it may
be proved that the equations of motion can be written

.o
F& -7 axl
. o ¥
a —
and e = BPL
2199




A. Trautman Chapter 7

References:

jes b= vl I vl e Moo W e |

el

Noether, G8ttinger Nachr. 235 (1918).

Bessel-Hagen, Math Ann. 84, 258 (1921).

L. Hill, Rev. Mod. Phys. 23, 253 (1951).

G. Bergmann, Handbuch der Physik, vol. 4.

G. Bergmann, Phys. Rev. 75, 680 (1949).

G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953).

Komar, Phys. Rev. 113, 934 (1959),.

Komar, Phys. Rev. 127, 1411 (1962).

S. Arnowitt, 3. Deser, and C. W. Misner; also A. Trautman:
articles in Gravitation: An Introduction to Current
Research, ed. L. Wiften, Wiley, N. Y. and London (1962).

Trautman, Lectures given at College de France.

S. Arnowitt, C. Mgller, and J. Plebanski, Lectures given
at Warsaw Conference 1962.

200




8. RIGID MOTION IN RELATIVITY THEORY

This chapter is based on a lecture given by Prof. F. A.
E. Pirani which was included in the lecture course of Prof.
A. Trautman. The notation of two-component spinors which
will be used somewhat in this chapter 1s explained in the
notes on Prof. Pirani's lectures in this volume.

8.1. INTRODUCTION

In Newtonian mechanics any body at a given time t may
be regarded as a set of points R(t) in a 3-dimensional
Euclidean space E3' By following the motion of the individual

particles of the body, any motion of the body defines a con-
tinuous one-parameter family of mappings ¢t of the subset

R(0) of E3, with ¢% carrying R{0) onto R(t). Rigid motions
are characterized by the mappings ¢% preserving distances,
i.e. being isometric. The isometric mappings of E3 consti-

tute the Galilean group, consisting of rotations and trans-
lations in E3, and so the motion of a rigid body is described

by a contlnuous one-parameter family of Galilean transforma-
tions. From this point of view the kinematics of rigid
bodies in Newtonian mechanics reduces to the theory of the
Galilean group.

In relativity theory we cannot consider an extended
body at one instant of time, as simultaneity cannot be de-
fined over a finite region of space. We must instead con-
sider the 3-parameter family of world-lines of the points of
which the body is composed. These will form a congruence of
curves. in Minkowskl space MM in the special theory of relati-

vity, or in a H-dimensional Riemannian space V;, in the general
theory of relativity. But there is no immeditely obvious
condition that can be imposed on this congruence that can
naturally be called a condition for the body to be rigid.

Let us first consider the situation in special relati-
vity. - In our discussion of the Newtonian concept of rigidity
given above, we saw that a prominent part is played by the
Galilean group, which is the group of isometries of E3. We

We might therefore expect that the group of isometries of MM
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should play a prominent part in the theory of rigid motion
in special relativity. This group is well known to be the
inhomogeneous Lorentz group (also known as the Poincare
group). Since we are seeking a condition on a congruence of
curves, the simplest condition we can impose involving the
inhomogeneous Lorentz group is to require that the curvesof
the congruence form the trajectories of a one-parameter sub-
group of this group. This 1s equivalent to requiring that
the space MM admit a Killing vector field everywhere tangent

to the curves of the congruence. We shall show below that
one consequence of this criterion is that if the motion of
the body (i.e. the instantaneous position and velocity of all
its particles) is known to one observer at one instant of
time, then the motion is determined for all observers at all
times. This condition is clearly too strict to be named
rigidity.

We must now look for a weaker condition. One is pro-
vided by that proposed by Bornl for a rectilinear rigid
motion, and then, independently, by Herglotz2 and by F.

Noether3 for a general rigid motion. This definition states:
A body is called rigid if the distance between every
neighboring pair of particles, measured orthogonal to
the world-line of either of them, remains constant
along the world-line.

This 1s equivalent to requiring every element of the body to

appear rigid, in the Newtonian sense, to an inertial observer

instantaneously at rest relative to the element, which is
surely the least we can require of a criterion for rigidity

if 1t 1s to have any connection with our intuitive ideas of

the concept. When, below, we speak of rigid motions, it is

to this Born criterion that we shall be referring. However,

it was shown by Herglotz and Noether that, according to this

criterion,
Every robtating rigid motion in flat space-time is iso=-
metric.

A proof of this will be given below. We see that even this

definition is unsatisfactory in that it fails to give us

enough degrees of freedom for a rigid motion because still

the entire motion of a rotating body is known when it is known

to one observer at one instant of time. .

Now let us turn to the situation in general relativity.

The above two attempts at definitions of rigidity in special

relativity can be immediately generalized to general rela- .

tivity. The isometry condition now requires that there exist

a Killing vector field everywhere tangent to the curves of

the congruence of world-lines of the body. But here we are

L. M. Born, Ann. der Physik 30, 1 (1909).
2.7 G. Herglotz, Ann. der Physik 31 393 (1910).
3. F. Noether, Ann. der Physik 31, 919 (1910).
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in an even worse position than before, as we know that in
general a Riemannian Space-time does not admit g Killing
vector field at all, and so in 3 general Riemannian space-
time a rigid motion according to this definition could not
exlst at all. The Born definition can be taken over into
general relativity in exactly the form stated above. We
shall see below that in a VM the Herglotz-Noether theorem no

longer holds, in the sense that there exist, in certain space~
times, non-isometric rotating congruences of time-like curves
which satisfy the Born criterion, but in a general Vﬂ again

no rigid motions exist. The integrability conditions for the
Born criterion in curved space-time have been studied by

Pirani and Williams, ' and a discussion of part of their work
is given below. It has been shown by Rayner,5 and 1s proved

below by the method of Pirani and Williams,u, that the angular
velocity of a rigid heavy body is constant in magnitude along
any particle world-line in the body. So again we see that
the criterion is unsatisfactory, even in space-times admitting
rigid motions.

We shall now give a mathematical treatment of the two
criteria, and shall prove the claims made above.

8.2. MATHEMATICAL FORMULATION OF THE CRITERTA

The world-lines of the particles of any body may be
written x® = Xa(g,e), where y = (ul,u2,u3) are three
barameters labelling the world-lines and 6 is a parameter
varying along each world-line. The coordinate displacement

ax® between the points xa(g,G) and xa(g_+ du, o + do) is

o x® dx
[y o

4y = 3 du* 4+ -udc (8.1)

where small Greek letters run from 1 to 3. The distance
between these points is given by

ds?= 2Abdx“dxb' (8.2)
4. F. A. E. Pirani and ¢. Williams, Seminaire Janet 5, 8(1962),
5. C. B. Rayner, C. R. Acad. Sci Paris 248, 929 (1959).
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. . R . 2
Both criteria of section 8.1 require ds® to be constant under
certain transformations, and we now consider each case separ-
ately.

(a) Isometric motion
The condition that the particle world-lines be the
trajectories of a one-parameter group of isometries of VM is

equivalent to requiring that O can be chosen on the world-
lines in such a way that d52 given by (8.2) is independent
of 0 for all given u®, du”, d¢, i.e.

d
T (qapdrodyb) = O (8.3)
Let def. 3y
Ve o= 5o
(8.4)

Then for any scalar function Hx),

d
e L4 (8.5)
so that (8.3) may be written as
£ (qapdredib)=0 (8.6)
Now we have, remembering (8.4).
él(‘l _ b 3-:54 %ll: @,\_/q
4 Suw TV 3\("( au")_au"‘ Ixb
2 (31 3 (2
= PY 2 Bu“)’ u*\ 3« (8.7)
= O

and also, since du® and d¢ are constants,

Xdu“:@ } {Clq—_-ojc{gﬁé_:gv“'zo
v v
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Hence from (8.1), (8.7), and (8.8) we get
7{ dx %= O
v

from which (8.6) gives

(,{w)dx«a\cuo (8.9)

The isometry condition requires this to hold for all du®

and all d¢, which by (8.1) means that at any one point dx?
is arbitrary. So (8.9) gives

g =0 (8.10)

as the conditions for an isometric motion, i.e. Va must be
a Killing vector field, as stated in the introduction.
(b) Born rigid motion.

Let ¢ be the proper time measured along the world-
lines, so that v given by (8.4) satisfies

viv, =1 (8.11)

Then for given du®™, the ax? given by (8.1) is orthogonal to
a |,
veoif

a

b
dg = — Vba-l(—q dp*
Ju
Bxg
and then dy® = hqb " du %
(8.12)
def.
where a T @ a
k L S L \ Vb
(8.13)
is the projection operator which projects orthogonally to v
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We note that
a b Q
h b h c - LL c (8.14)

For the dx® of (8.12) we have

d % ayb
C{Sz = %cc\ hcai’t b 3—(.&“ g:kﬁ’ du'dduﬁ

which with (8.14) gives

b
5% = hy Fha 355 dutdut, (8.15)

78

The condition for Born rigidity is that, for all given u” and

du”®, this expression be independent of o. By (8.5) this
necessitates

< 3yb
d{(l\ab%x'u“%{lJ: o

With (8.7) this gives

Ix* Jyb
Flhy) Py =0 (8.16)

£l )ve=o0 (8.17)

So as Dxa/Bu“ and v2 together form a basis of the tangent
space at any point, (8.16) and (8.17) together give

Z{/ng“'o

as the condition for a rigid motion.
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8.3. INTEGRATION OF THE ISOMETRY CONDITION IN Mq

Use Minkowski coordinates in which the metric tensor
takes the form

Jab = d(&}(~i)—l)—l) +1).
Then (8.10) gives

v

J%B’“‘L’E QQ_\/L‘*‘DL:VQ:O (8.18)
Differentiating with respect to x° gives
3cd.Vp + 3.9 Ve = O (8.19)

Cyclically permute the indices %o obtain

- Pady v, — 9adcvy, = O, (8.20)
akacvm+ab3&vc= 0. (8.21)"
and add (8.19), (8.20) and (8.21) to give
3PV, = O
Integrating once gives
Vg™ Wae | constont (8.22)
and from (8.18),
Bge = — Weq (8.23)
Integrating (8.22) again gives
Ve = s xb b (8.24)
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where the b? are constants. This may be re-written as

dxs «
Jo = WX+ b (8.25)

It follows immediately from (8.10) that

=5 A X% b
d«r<%“’ Se “&>=O

so that ¢ is a constant multiple of the proper time on every
world-line, but this multiple will differ from one world-
line to another. So ¢ may be chosen as the proper time on
any one world-line, but it will not then so serve on the
other world-lines.

We recognize (8.25) as an infinitesimal inhomogeneous
Lorentz transformation, and so the general isometric motion
is one in which the particle positions at parameter o + do
are obtained from those at time ¢ by an infinitesimal inhomo-
geneous Lorentz transformation which is independent of¢. If
we use the term boost for a Lorentz transformation from one
frame to another parallel to it but with a uniform velocity
relative to it, then we can analyze the motion according to
the type of transformation as follows:

When the infinitesimal inhomo-
geneous Lorentz transformation

is: The motion is:

A pure translation Rectilinear motion with uniform
velocity

A pure rotation Rotation with uniform angular
velocity

A pure boost Rectilinear motion with uniform
acceleration.

The term 'uniform' here indicates a constant value along the
world-line of any particle. The value will, however, in
general vary from particle to particle sinece o is proportion-
al, but not equal to the proper time on their world-lines. )
The general motion is a combination of all three types given
in the table. 1In integrating the infinitesimal trans forma—
tions however, we shall see that one singular case occurs,
that of a null rotation, which is a certain combination of a
rotation and a boost.

We shall now consider the problem of explicitly inte-.
grating (8.25) to obtain an explicit expression for the world—
lines of the particles in an isometric motion. We write
(8.25) in matrix form thus:
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d
"t avab , (8.26)
de =T
where
y! L'
X% b*
Y= 1y ) L): L2, and Q = “ w“bll
x4 ~ bt

whether or not the matrix Q is non-singular, b can always be
decomposed thus:

b-ac+d  wth ad=o0 (8.27)
and (8.26) can then be written as

(x+e) = alyx+c) +d

oo
q

with solution
Qo
X(e)+¢c = e (xe)+c) +do (8.28)

To evaluate le, we must distinguish between two cases for
2, most easily done in terms of two-component spinors.
We shall write, e.g.

Wetp =< Waxsy

to indicate the correspondence

AX BY .
Wep = T T Waxey

L. b .
WaxBY = U“A:‘ T ey Wab

between tensors and two-component spilnors, as explained in
my lecture course. Then we have, sincetdab is skew,

6. F. A. E. Pirani: Gravitational Radiation (this volume).
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Bap =7 W, 56 35 + €.p D47 (8.29)

with wAB = &%A. wAB can be decomposed into a symmetrized
product of eigenspinors thus:

Wag = Kadgt ApKg (8.30)
The two cases we must distinguish are KAAA %+ 0 and kh)ﬁ = 0.

(a). The case kAf # 0.

In this case we may modify the decomposition (8.30)
by writing

Wap = 2 0+ ) Ky pp+ paKe) (8.31)

with
Kapt=1

and w,)? real. Define real null vectors ka, m® and complex
conjugate null vectors ta, %a by '

AT e o

_ ~ (8.32) |
ta@? KAF).( {?q‘é_" PAK* :

Then on substituting (8.31) into (8.29) and using (8.32) and

€ap = Kalp — KaKg (8.33)
we get
web —2f kS wt R (8.31)

1
Choose a special coordinate system gxa } in which

I(a,'-‘ (1,0,0,0), m*'= (0,1,00), 1o (0,0,1,0) % (6,0,0,1) (8.35)
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Then from (8.32) and (8.33) we rfind

k“mazﬂ'){“{a: -1 all other scalar products zero,
(8.36)
so that (8.34), (8.35), (8.36) together give

) L‘)O;’ :du{g (YZF)?) iw)—Zu)) ( 8~ 37)

Then

acye' . ne -no WE e
(e )L/—dmj(e , ¢, € e ) (8.38)

Now make a coordinate transformation to coordinates {xa},

1
x% = Ag, xb s> where
C o | oo |
| 0O -i ¢ a' L QoO-~t}
Aayzé | - 00O SO thatAb—-ﬁ L (00 (8.39)
100 -t 00

Then we find that

3@19 A c;\Ad’Q gc'd' = c((o,j (—l)—l)—l,-f—l)

]

so that the x% are Minkowski ¢oordinates, and transforming
(8.38) gives

CosWd ~SNWe o O
& S WE Coswd o) O
(eﬂy) b = o o cos)uzo‘ sivh ks (8.40)
o o sMh?w cxhqr

which we recognize as the matrix of a homogeneous Lorentz
transformation consisting of a rotation in the (xl,xz)—plane

through an angle w06 and a boost in the x3—direction to
velocity tanth'. The origin of coordinates can always be
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chosen so that ¢ = 0, and then
Q
X)) = € vy + do (8.41)

From (8.27) we see that d is a null eigenvector ofQ, and so
we can distinguish the four possible cases:

W#0, u+£0 when d'=d*=d3*=d%=0
w0, N=0 when A= 4. 0
w= 0,9 +0  when d3=d%=0

w=0,n=0 when d is arbitrary, and the
motion is simply translation with uniform velocity.

We note that in the case d = 0, the point (0,0,0) at t = 0
must be excluded from the body, because by (8.41) we see that
it remains &t the same point in space~time, and so cannot
represent a real particle of the body. i

We have thus integrated case (a) in a speclal Lorentz
frame. The motion in a general Lorentz frame is obtained by
making an arbitrary Lorentz transformation.

We now turn to

(b). The case KAAA = 0. ,
In this case KA and AA are proportional and can, there-
fore, be chosen so that Ky = EAA, and so (8.30) becomes

W KaKg (8.42)

AB "~
Now choose any PA such that KAVA = 1, and construct the null

vectors (8.32) as before. Then in place of (8.34), we now
get

wut=2qu({u+iu) (8.43)

which in the special coordinate system of (8.35) gives

S O - -} )
ol o e o o o (8.4L)
Wy o -1 o o
o -t O O
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Then we find that(23 = 0, and

V' o+ o —a
o’ L 2 O! = o
o -G o |

Transforming to the coordinates §xa} of (8.39), we get

| @] G -G
acy® ° ! © ©
- L i
(e ) B" -0 O | 20-2 zo-z_ (8.”5)
-0 o -fg* i+ic0?

This is the matrix of a finite null rotation, and is the
singular case referred to in the introduction. Its nature is
more easily seen in the infinitesimal form. We have in these
coordinates

0 O { -1
o] O @) O
Woy = -l o o o
- 0 o] o
which are seen to be a combination of the infinitesimal
matrices for a rotation about the xz—axis and a boost in the

xT-direction. The general form of d satisfying (8.27) is
easily seen to be

d'=0 dQOﬂU&wﬂ d®= J%

b

Substitution into (8.41) now completes the integration of
case (b) in a speclal Lorentz frame. .

8.4, THE ISOMETRY CONDITION IN Vu
In a general space-time, Killing's equations have no

solution, and no isometric motions can exist. If we attempt
to proceed as in section 8.3, instead of (8.18) we have
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Vavp + Vv, =0

and on using the Ricei ldentity
d
Vo Vpv, — Vv, = R cab Vy

together with the identity Rd[abc] = 0 of the curvature
tensor, we get instead of

Bbécva = O

the equation Vo Ve v, = pd

We cannot then proceed as before.
For later use we shall now express the condition for
an isometric motion in terms of the normalized velocity vee-

tor. If we now let 2 be the normaligzed velocity vector, so
that vava = 1, then the condition for an isometric motion is

that there shoulg exist a scalar field Z such that §va is a
Killing vector field, i.e.

Vc\(ivg)+ V\,('gva) = 0O

Then 2\7&\”}) + v BL) $=0. (8.46)

Define the acceleration vector “a by

o8- Q_V“__vabvq (8.47)
ds
Then multiply (8.46) by vP and use va;vb = 0 to give

g, +3,8 + ka_é =0
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a

Multiplying this by v~ and using vaa% = 0 gives

ds _

4= ©
so that i"(a:“sai
and Ko = - sc\(fza%g) : (8.148)
Hence /N 9= o Vv (8.49)

Conversely, (8.49) implies the éxistence of a scalar §
satisfying (8.48), and we can then work back to (8.46).
Equation (8.49) is thus a necessary and sufficient condition
for the motion to be isometric.

We note also, for later use, that (8.48) and (8.46)
give

/ (8.50)
(aVL) — V(Q"‘L) = O e~

8.5. THE BORN CONDITION IN Vu

In section 8.2 we showed that a velocity field v
satisfies the Born criterion for rigidity in a VM if and only
if

F =0 whee =g -vavy (8.51)

v

and v® is normalized, vava = 1., We shall now study some

consequences of this condition.
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For convenience, introduce the projection symbol L,
read as 'perp,' which projects every free index with hab, e.g.

LRY L E R RN R R,

Then we have

Vay, = (h o+ vaveX L\iJr vad)Vc V4
= L Vav+ vave Vv, ws VULV, = 0

= L Vv + v, « by (8.47)

Now, following Ehlers,7 we make a further decomposition of
the purely space-~like tensor_LVavb thus:

_LvaVL= Wl + Tl + %eiqab

where
def. ,
Woy, = | V&gvk] is the angular velocity tensor,
def. lor o] « s
Gl = l.VQanj—gzy;LQS the shear velocity tensor,
and
def.
8 = g v is the expansion velocity scalar.
Then
VaVp = Wy + oy + %eh% + Vo (8.52)

We note that(ﬂab is skew and Géb

Now (8.51) can be written in the form

is symmetric and trace-free.

7. P. Jordan, J. Ehlers, W. Kundt and R. K. Sachs, Acad.
Wiss. Lit., Mainz, Abh. Math-naturw., Kl., 791 (1961).
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A vc_ LTo.l:, -+ l"ac_vbvc -+ hCLJ v‘:‘\/C = O

which simplifies on using (8.47) to
ViaVyy = %aViyy=0,ie L¥Vuvy=0 (8.53)
With (8.52) this gives
T + 56hy =0

and by taking the trace of this and using caa = 0 we get

0"0}0:.0 e'—-O (8°5}4)

We have thus shown:
A continuous medium is kinematically rigid if and only if
its velocity field i1s shear-free and expansion-free,

From (8.50) and (8.53) we also have:
Every isometric motion is kinematically rigid.

To obtain further consequences of the Born criterion,
it is convenient to introduce an auxiliary 3-dimensional

space V. 1In so doing, we are following the treatment given
by Pirani and Williams.Ll We first note that, as in section

6.4, 1t follows from;(hab = 0 (from now on for convenience

we shall omit the v in #) that there exist coordinate systems
in which v

va. (0,0,01) 3 Phafy . = 0. (8.55)

Equations which, so far as is shown, Hold only in such a

coordinate system, will be written with % 4n place of =.
Then we easily see that

ve s, WVa i%cw )V4:%44§i,haetoquio,htﬁ*‘/« (8.56)

4

and
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(8.57)

Now from (8.55) it follows that h“ﬁ’ «,f =1,2,3, depend only

on the three coordinates x% and from (8.51) the rank of the
matrix h ., 1s three, i.e. 1t is non-singular. Hence hﬁ@ may

be interpreted as the metric tensor of a three-dimensional
A

Riemannian space V. Geometric objects in this space defined
in terms of this metric (e.g. affine connection, covariant
differentiation, curvature tensor) will be indicated by A

A o) A
(e.g. T i R VL, RuﬁXS ), and small Greek letters will run

from 1 to 3. We shall now relate such objects to those of
the original VM'

We first have

A - A ®
Jop = hm(s 9 P C}(B (8.58)
the latter following from
¥ * ~7
g’ 2 hagtts Slo vt = S

Now we have from (8.51)

A "’bc :wVEVQ\/C - VCVAV\Q
and from (8.54) and (8.52),

Vovy = Wap + Vg oy
so that (8.59) can be written

VaLLC = mZwag vy - 2 Va Vi, ® o).

Equating this to

d o d
Va L‘Bc = B°L‘hc“ “dcr‘a‘, "ledl o

C
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and using

r f(% £ Lo (ubns 4 33has = dhe)
then gives
) Z@ B rf/s + % (Zosevp ~ Velps) (861
Now let Tab...c be any covariant tensor which is

orthogonal to v& on all its indices and which satisfies

%{ TGJO"‘C =0

Then by (8.57),

3 Ty
3 x4 ©

and further, in these coordinates T ab...c vanishes 1f any
index is 4. Hence T‘ 3 may be considered as a tensor in
Q. We now claim that

A

Tav-s L YTy (8.62)
and we shall prove it for a vector Ta. We have
VaT, = 3.7, — T T
from which
L VT, = k‘ih“ (3,T,— T8, Te)
3., P_v{, AR o +L4“L;"“),,(8’63

on using (8.56). Now we have

B3

\70.\”6 = {aAVP+ r'apc Ve FP‘\‘?
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which gives with (8.60)
Th2ule, (8.64)

and putting this into (8.63), and using (8.56) and (8.61),
we get

" Ay A
LTS AT - 1T = 9, (8.65)

This' completes the proof for a vector Ta. The proof for

higher order tensors then follows easily.

We may now apply (8.62) with Tab =i§7aT This satis-

b’ A
fies the necessary conditions by virtue of (8.65) and VT
being, by definition of f, independent of Xa. Then we get

N

~ ¥*
P VP_Ti: 1V, .LV/,’T‘ (8.66)

Now VoLV, Te = Vo ChE LY VPTi)
q —
= hfy A AR INALARA TS Ty
Substitute (8.59) into this and use (8.60) to give
VAL VTC = LV I T - kI cw ke T (8.67)

1

But VqTq = 0 gives

q— .
Vv VFT& = li§7Fvi
and

o= {TcL = VIV Tq + 7Ty 9gvF
and on using these and (8.60), (8.67) becomes
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LY LV, Te = LVaVLT, 4 wacw 4T, + g 0,9 Ty

Substitute this into (8.66), take the part skew in « andﬁ
and use the Ricei identity to give

A o+
Rq(.,xg = Kopis - (w«xw@g—wﬁx ) -2 Waploss, (8.68)
But we have identically for any 3-dimensional skew tensorn%v,
Lx)o(fﬁh)x;] = 0O
and using this in (8.68) gives
R 2 Rugys — 3 (8.69)
B3 313 Lowg Wyg . :
We now claim that it follows from (8.62) and (8.69)
that
(1) F (LRyy -3wywy)=o0 (8.70)
(ii) 1Ir Tab e is a tensor orthogonal to v® on all its
indices and such that
r{ TQL’.__ =0
then K LV.Ty... 4 =0, (8.71)

For in the adapted coordinate system, on using (8.62) and
(8.69), (8.70) and (8.71) simply become

p)

5 - ) =
sy s = O 0 55y ViTero 3 = 0,

equations which are true by definition of V. But being ten-
sor equations, (8.70) and (8.71) hold in all coordinate Sys=-
tems if they hold in one coordinate system.
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8.6. THE HERGLOTZ~-NOETHER THEOREM

Let us now consider the situation in flat space-time,
so that Rabcd = 0 and covariant derivatives commute. Then

(8.70) gives

?\/(wabwd)=o- (8.72)

Now assumeb)ab to be non-zero, so that the matter is rotating.
cd ab

Then multiplication of (8.72) byw and then by w leads
easlily to
Klwa) = 0, (8.73)
Equation (8.71) then gives
£ . )=0
from which
£ L v,00.=0 (8.74)
But
Wie = VpVe = Vyu,
from which we easily get
LV Qo= = @a X
Hence (8.73) and (8.74) give
£« =0 (8.75)

Now a simple calculation gives

V.J{VL,_ ,{V&v!J: Ve VoV v©
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But;{?b = & and f%gvb =j{(aéb + Véxb)’ So (8.73), (8.75)
and (8.76) give

Vo' o((a = o<°~°<b -+ V. V&VLVC

Hence

Vie 43 =0

G,

and so by (8.49) the motion is isometric.

In the previous section we proved that every isometric
motion is rigid. We have now proved a partial converse, the
Herglotz-Noether theorem, namely:

Every rotating rigid motion in flat space-time is isometric.
We shall now show, however, that there do exist curved space-
times which admit non-isometric rotating rigid motions. For
example, consider the transformation of the metric given by

aqg d —joda = C}d’ — XVaVy 4+ Z}’V(asb)“’ (‘-x)"yzsgsl,

where X,y are arbitrary scalar functions of position with

ix1<fl, and S, is an arbitrary vector field orthogonal to Va,
i.e. vasa = 0. This necessitates a corresponding transforma-
tion
- - /.
VY em v = (- By

in the velocity vector to retain its normalization. Then we
see that

— def

"’ah C}ab _gﬁ‘\;k = Cé.a.\,“vq\‘b = L’o.‘b

and hence a congruence of particle world-lines which formed
a rigid motion in the o0ld metric will do so also in the new
metric. But clearly the condition for an isometric motion
will not necessarily be preserved, and such a transformation
can be made without annihilating the angular velocity. Thus
by such a transformation one can construct non-isometric
rotating rigid motions. The Riceci tensor of the new space,
however, will in general he very complicated and it is not
possible to say whether or not it represents a physically
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possible matter distribution.
Now consider a non-rotating rigid motion in a curved
space time. Then

V‘LV‘D = V&O(b

Hence

Ve VLVC] = O

which is the condition for the congruence to be hypersurface-
orthogonal. Furthermore,_LVavb = 0, from which we see that

these hypersurfaces have zero extrinsic curvature. In flat
space~time this means that the particle world-lines of a non-
rotating rigid motion are orthogonal to a family of hyper-
planes. In any space-time it means that the motion of the
whole body is known 1f the motion of any one particle is
xnown. For we have just to construct the family of hyper-
surfaces formed by all the geodesics through and orthogonal
to the known particle path, and the other particle paths must
be the orthogonal trajectories of these hypersurfaces.

8.7. DYNAMICS

All our work so far has dealt only with the kinematics
of the motion; we have not concerned ourselves with the
influence of the body on the space-time through which it 1is
moving. We shall now prove one simple result which needs
dynamical considerations.

The gravitational field equations are, from section 6.9,

def.
Gap= Rap - 5Rqap = —KTab (8.76)

where K = 8‘{Tk/cl1L and Tab is the energy-momentum tensor of

the body. We must now ask what is the connection between Tab

o

and the velocity field v We shall adopt the point of view

of Synge~ concerning the physical interpretation of the

8. J. L. Synge, Relativity: The Special Theory. North-
Holland Publ. Co., Amsterdam (1960).
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energy-momentum tensor; he identifies the kinematical

veloclty v® with the dynamical velocity, i.e. the time-like
eigenvector of Tab' Thus we have

Tay v° = £ Va (8.77)

defining a scalar field ¢, which may be interpreted as the
energy density of the body.

Now for a rigid body, on using (8.60) and the conserva-
tion equatimebTab

#i

0, we have

d =
e vt - Talpy) e

it

T 0Ty meﬂ

H

ab
T Vavy, (8.78)

_ ek
= T Ve,
- pVhx, =0

and so the density is constant along any particle path.
Now we easily see that

LIEALBCJ.RQL’CC{ = L!AAL‘LC Rc&‘:ca =-Z GQ"VQVL

and so,on multiplying (8.70) by hadhbc we get

g{(quv“v"hSm*) =0 . (8.79)
where

W= 3 wabwo.\a

is the magnitude of the angular velocity. But by (8.76) and
(8.77),
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Lz_Kg,

Flaavavh) = —x Z{T% =0

GKo.&,VQV

and so

Equation (8.79) then gives

C;[ﬁ: 0 (8.80)

and so we see that for a rigid body the angular velocity
along any particle path is of constant magnitude. We note
that the same result follows if, instead of dealing with a
heavy body satisfying (8.77), we consider a test body

in vacuo, so that Gab = 0. The result for a heavy body was

first proved by Rayner.5

8.8.. INTEGRABILITY CONDITIONS

So far we have studied properties of rigid motions
without answering the question: under what condlitions do
such motions exist? Suppose we are given a particular space-
time, so that gab’ Rabcd’ etc. are known functions of the

coordinates. We should like to find what conditions must be
satisfied by the geometry and the initial conditions imposed
on the body in order that there should exist a rigid motion
in the space-time with these initial conditions. This is
the problem of constructing integrability conditions for the
equations of rigid motion. From (8.53) the equations we are
concerned with can be put in the simple form

\7(& VL) o VC<\7C V(&)V;u)': o ) \lq\/CL =1

but in this form, where the independent variables are the

four va, the integrability conditions are very difficult to
construct. To make the problem easier, we increase the

number of independent variables by treating &2 andLoab, as

well as the va, as unknowns. It is then possible to write
the equations in a form which expresses the derivatives

vo.Vl, , Ve «, YV Wie
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as algebralc functions of the geometry and the unknowns, and
then integrability conditions can be constructed in a well-
known manner. The filrst equation of the new set is very
simple; we have

vo.VL = Wap + Va&y

but the others are very complicated. The problém is solved

by Pirani and W:‘Llliams,4 but we shall not go into details
here. The equation (8.70) plays an important part in the work.
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9. COSMOLOGY

9.1. INTRODUCTION

Cosmology is concerned with the structure ang evolution
of the Universe as a whole and attempts to give a description
of its geometry and distribution of matter. Local irregulari-
ties are neglected despite the fact that these irregularities
occur in regions that are rather large. The existence of
cosmology as a science rests on the assumption that there are
large scale overall regularities in the Universe and this
assumption is usually expressed in terms of a Cosmological
Principle. The cosmological principle differs in detail from
one cosmological theory to another but broadly speaking it
expresses the fact that the Universe is more or less the same
everywhere.

We shall now present some (more precise) formulations
of the cosmological principle.

(1) There exists g "cosmic time" t or a set of privileged
hypersurfaces in Space and time such that the geometry of.
these hypersurfaces is the same at all points. In addition
to this homogeneity condition we sometimes require the hyper-
surfaces to be isotropic.

(11) A second possibility is to start with a privileged
family of observers or world lines such that the Universe
appears to be the same for g1l observers at different points
of space, at different instances of time and in all directions.
In Riemannian space-time, this implies the existence of g
cosmic time (the world lines form a normal congruence ).

This principle implies g "steady state" cosmology.

The simplest model that one can envisage is one whose
geometry 1s Newtonian and whose matter distribution is uni-
form and at rest in a particular inertial frame. This model
however, leads to difficulties which we shall discuss.

(1) Olbers' Paradox (1826)

Assuming the above mentioned model, there is no reason
why it should be dark at night! This is seen as follows. If
the Universe is populated unlformly with stars emitting radi-
ation at a constant rate then we can calculate the radiation
falling on a given area at any point in space. If the inten-

sity of radiation falls off as l/r'2 and n is the number of
stars per unit volume, then the totgl amount of radiation
per unit area per second is given by
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o E
S n an1'4“k°dr;WhiCh diverges.

Even when we regard the stars as extended "black bodies™ and
take into account the absorption of radiation by them, we
find that the intensity of light at any point is the same as
the average intensity of radiation on the surface of the
stars. 1t does not seem possible to remedy this paradox
without abandoning the idea of a static Universe.

(i1) ©Newton's law of attraction when applied to an infinite
distribution of matter of constant density leads to an in-

finite potential viz.
K
= ~ 00
- Lav

This equation, however, follows from Poisson's equation
Vi = 4TH<§>
only under the boundary conditions

$-o(t) wd |v8l=0(L)

which can be made only if vanishes sufficiently rapidly
when these boundary conditions are not satisfied; if is a
constant, a typical solution of Poisson's equation is

{ny 2
¢’—7;£V

which unfortunately also contradicts the initial assumptions
in that, first, this solution appears to distinguish the ori-
gin from other points since the gravitational force vanishes
only at the origin, and secondly, in view of the nonvanishing
force everywhere but at the origin, the stars cannot be at
rest.

Neumann and Seeliger (in 1895) proposed the idea of
replacing Polsson's equation by

Vi¢ - x = Amep.

This c¢orresponds to assuming that the gravitational forces
have a finite range with 14ﬁ? being the characteristic length
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for the gravitational interactions. This equation has the
constant solution

_ Anx
$ = I

for constant f, which is in agreement with the cosmological
principle and the static nature of the Universe.

With the advent of general relativity, it seemed a
natural course of action to apply the Einsteiln equations

Rap— 33uR= - ¥rcTqy (9.1)

to cosmology. Einstein himself thought that these equations
would be unsatisfactory for two reasons:
(i) The equations (9.1), in the Newtonian 1limit, reduce to
Poisson's equation which at that time seemed to be unsatis-
factory.
(1i) Under the influence of Mach, Einstein believed that in
the absence of matter there should be no geometric structure
to space~time, i.e. with T b = 0 there should be no solutions
to equations (9.1). a

Therefore, Einstein modified the field equations by
adding a cosmological term

A%AL“" R%—%ad‘,{f: e (9.2)

However, these equations are not the analog of the Neumann-
Seeliger equation in the Newtonian limit but go over into

Vip + Ac? = 4Tn<§>,
Furthermore, it was found that with Tab = 0, equations (9.2)
did have solutions. In 1922 Friedmann found a number of non-
static solutions of (9.1) which satisfied the cosmological

principle. In view of these arguments Einstein later aban-
doned the cosmological term in the field equations.

9.2. NEWTONIAN COSMOLOGY

We choose as our field equations in Newtonian theory
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T +he? = 4rkf.
(9.3)

For constant f, a typical solution is

¢ ~ ¢

and hence V¢ ~ T

which
ever,

appears to violate the cosmological principle. How~-
we know that in Newtonian theory, the existence of a

strong gravitational field extending to infinity forces us
to replace the group of Galilean transformations leading

from o

ne inertial system to another, by a larger group in-

volving accelerations, and it can be shown that in these
circumstances, the cosmological principle is not violated.

and we
motion

In the
and O

From the cosmological principle we infer that

AN

introduce a veloclty fieldA~7(§,t) characterizing the
of the substratum.o,

- —
o T

bt

figure, 0, O' and P are points of the substratum, 0
are assoclated with observers, and P is any.polnt.

-

;3 = ?T -

i

(¥ £) = Velocity of P as observed by O

(7%

N
7 Velocity of P as observed by O

and consequently T(P,E) = ST ) + G'(?Zf)

231




A, Trautman Chapter 9

The cosmological principle states that if 0 measures the
veloclty of a point P to be ¥, and if the point P has the
same relation te O' as P has to O, then the veloecity of P!
as measured by O' should also be ¥. From this argument we
deduce that

V(T &) = v'lr b

3

or

TP ) - T(E4) = T(F-a ,4)

1 i

> K] . ] b .
Thus v 1s a linear homogeneous function of r and we can write

= AT P

XL . .
where A p is a tensor. However, if we assume that the motion
of the substratum 1s isotropic, then since, in general, a

tensor distinguishes directions, we must write A%, as a
‘multiple of the unit tensor i.e.

V= AT (9.14)

which are the differential equations of motion for the sub-
stratum.
We can always write

A =

DR

and integrate (9.4) to obtain
Vi) = RQ ¥,

where we have put

Y= T (L)

o
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and

R(t)=1.

We can now supplement equation (9.3) by writing down the
equations of motion for a perfect fluid without pressure, viz.

Cf;;z = —qrodd (9.5)

and the continuity equation

g{ + dw pf?) = 0, (9.6)

Equation (9.6) implies
o - p(t.) ..
pLes = [R)]

If we now assume

D&p ¢ = gu{é $ (¢) Xp=12,3 (9.7)

then this ensures that the curvature tensor is spherically
symmetric and constant over the surfaces of constant time, a
situation which is necessary to satisfy the requirements of
homogeneity and isotropy. It then follows from (9.3), (9.5)
and (9.7) that .

@ 2
Rz _ ?lg_g_._lﬁ. _ )CBEZ:/& . (9.8)

which can be interpreted as the energy integral if we regard
R as the coordinate of a particle moving in l-dimension and
if we regard

L xo, Ne?* oo .
i BT SN (9.9)

as the potential energy.
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We can represent the solutions of these equations
graphically:
Tirst we plot V(R) against R for various A .

A<o

V(R)

The constant ﬁ characterizes the solutions or time development
of the system.

rRA

T
This 1s a bounded orbit and is valid when
(1) X <Oand all B
(i1) Y=o0and B<oO

(1i1) Y»oand p <(3°

This situation can also prevall when X»o QMA@ <fg°-
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R R~€Mct

Cosmic Repulsion

Gravitational Attraction
=>{

This is the situation when X > o | B >p..

When 1/R and ﬁ are small compared with the cosmic term

R ~ eJV;dt
R

These are the solutions when \ >o,@=ﬁ.

The solution R = Ro is the Einstein model and is the only

static solution. It is not very interesting because of its
instability.

The value of ﬂ can be shown to be related to the
characteristic time of the solutions., In the middle figure
on p.234 for } = O,ﬂ < 0, 1t can be shown that

3% 2k 0,
31{%!*’9-

|
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Suppose we wish to correlate our theoretical models
with observations. One of the few things we know about the
structure of the Universe 1s Hubble's constant which tells
us the rate of change of the red-shift with distance. Hence
we want our theory to give an account of the propagation of
light so that we can calculate the red-shift. In order to
write down Maxwell's equations in Newtonian theory we must
introduce the ether which 1s a privileged inertial system,
at each point of space, absolutely at rest. Alternatively
we can define the ether as a rigging of the hypersurface
t = const, where t is the absclute time and a surface is
sald to be rigged if at each point of the surface there is
defined a direction not tangent to the surface.

From the hypersurface

t = constant
we form

ta= 3.t

and suppose we are given a rigging characterized by a vector
field u? such that

utt,=%4 .
Define
oks
X&b = uau‘: __%
where gab is the singular metric of Newtonian theory. We

b . R R
) adb ig non-singular and Maxwell's equations can

Xab

can show that
be obtained simply by using to raise indices. We recall

that using gab to raise indices does not give Maxwell's
equations. We have

o = 2 Apu
which imply
¥ [&L‘c] = O
236




A. Trautman Chapter 9

and these correspond to

i’
div =0 cud E +5p = O
but on raising indices with gab we get
> .o
°')l:>~

which imply

-

dwE-0 = cul ¥,

Owing to the singularity of gab, it is impossible to obtain
the term 3E/3t in the last of Maxwell's equations. If we

use Yab in place of gab however, we obtain the correct form
of Maxwell's equations.
In particular when

* qQ
u“—.-,go

(where 2 here means equal in a particular inertial frame)
Maxwell's equations in this frame have the same form as in
special relativity.

In cosmology a natural rigging is provided by the world
lines of the particles of the substratum and in this case
(in an inertial frame)

ut= (1, v)

where ¥ is the velocity of the substratum and the eikonal
equation (derived from Maxwell's equations) describing the
propagation of light is

¥ - (H+T9¥) -0 (c.p

From this we can deduce the formula for the change in the
frequency of light from distant galaxies, viz.
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e
/ At;

- world lines

audl cleocleQ.lCS

Wi Al RW)

3

w,  At, R(E)
wherecul and&)2 are the frequencies of the light. This red

shift explains Olbers' paradox. Note that there is a red
shift only if the Universe expands i.e. if

R(t,) > R(t,)

9.3. RELATIVISTIC COSMOLOGY

We shall give a cosmological principle which leads to
the important class of Friedmann solutions. :
(1) The world lines of particles of the substratum form a
normal congruence (i.e. hypersurface orthogonal) of time-
like geodesics. This specifies a "cosmic time" viz. the
proper time measured along these geodesics from a given
hypersurface.

(1i) The hypersurfaces t = constant are isotropic. It can
be shown that this implies that these hypersurfaces are
spaces of constant curvature.

(i11i) The motion of the substratum is non-shearing. A, B, C
are particles of the substratum at a given time and A' B' ¢!
are the same particles at a later time. The condition for no
shear is that the triangles ABC and A'B'C' be similar.

We choose coordinates such that

t = proper time

along the world lines of the substratum particles and n*
(X=1,2,3) be constant along each world line. It follows
then, that .

ds? = d4* - Emﬂ]’k.‘ﬁ dyadyb
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where hy, dx™ dxf is the time-independent line element of a

space of constant curvature.

Every space of constant curvature can be realized
(locally at least) as the surface of an n-dimensional
hypersphere in an (n+l) Euclidean or pseudo-Euclidean space.
It is easy to calculate the line element of this sphere e.g.

dyt + cij"“ +de?

dit = K . z
El + XCK’-&} +Zz)]
where
K=+ 1 for curvature =~ 0
= 0 for curvature = 0

= - ] for curvature < 0.

With this expression for h ., (or the corresponding expression

in polar coordinates) we can calculate the curvature tensor
and hence the Einstein tensor.

If we now take the form of the energy-momentum tensor
to be that of a perfect fluid without pressure viz.

Teb . fu“ul’

where u® is the b-veloclity of the substratum, then the
Einstein field equations become

*a 8wk | NcrR? 2 (9.10)
provided

R + O
and P. = féfa)) Ry =1,

This is called Friedmann's equation and has exactly the same
form as (9.8) in the Newtonian theory, except that in (9.10)
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the constant on the right-hand side is the value of the
curvature of the hypersurface t = to' If R =0, in addition

to (9.10) we must also have

K
G

which determines the relation between A and fo' This case

corresponds to the static Einstein Universe and ifxA>0
then K> 0 and the Universe can be thought of as being a
product of a 3-sphere and the time line, i.e. the Universe
is cylindrical. This Universe however, has been shown to
be unstable.

Another special case is the de Sitter Universe in
which = 0 and A > 0. One possibility for writing its
line element is to choose K = 0, and then

2t/
dst= dt*- e’ (c(v‘+clj"+c\21>

where

T2

The de Sitter Universe in a space of constant 4-dimensional
curvature.

9.4.  PROPAGATION OF LIGHT IN RELATIVISTIC COSMOLOGY

We saw above that with the assumptions of section 9.3
the cosmological metric can be written in the form z

ds*= dt2- [RO 4> ' (9.11)

where dt 1s the proper time along the world-lines x%* = const

of the particles of the substratum, and d62 is a time- inde-
pendent line element of the hypersurfaces t = const. But
for studying the propagation of light in this space, as we
know that the paths of light rays (i.e. null geodesics) are
invariant under a conformal transformation, we may consider
instead of (9.12) the metric
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N dsz i - dt3 — C[O'z
a3 % [R®]? /Em)]*
Now define a new time-coordinate t' by
dt’= dt /RCt), (9.12)

Then

~

dsz2= dt)*- do*

which is a statlc metric. We may therefore apply to it the
theory of section 6.5. This tells us that 1f we have two

observers 1 and 2 traveling along lines x = const, i1.e. with
particles of the substratum, then if 1 emits two pulses of
light at temporal separation (ds)1 = (dt')l which are ob-

served by 2 to have temporal separation (d§)2 = (dt')z, then
(dth, = dt, (9.13)

But it also tells us that if the frequency of the light
emitted by 1 is wl and 2 sees 1t as having frequency(ﬁ2, then

o, | Wy, | @,
(*)'J.— (c\S)‘ B Q:('t)l

So using (9.12) and (9.13) we get

def
|4z = @ 2 RGD o 4

G-t e
t

i

iR

def

where é =~ dR/dt and tl is the time of emission by 1, ¢t

2
the time of reception by 2. z 1is the parameter usually used
to describe the red-shift (which it is for R > 0). If we
interpret c(t2 - tl) as the distance between the emitter

and observer, (9.14) says that the red-shift z increases
linearly with distance. This 1s Hubble's law, and the con-
stant R/R can then be identified with Hubble's constant. i
This interpretation,; however, can be made only when c(t2 - tl)

is (cosmologically speaking) small. For when (t2 - tl) is

large, not only does the approximation in (9.14) break down,
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but also the interpretation of c(t2 - tl) as distance can no
longer be justified. ab
Exercise: Show that if g is the degenerate metric tensor

of Newtonian theory and u? 15 the velocity U-vector or the

substratum in Newtonian cosmology, then xab dif uaub - gab
is a Riemannian metric and that the corresponding time-
element can be reduced by a coordinate transformation to the
form

dt? - ERH?)]Z (ch(l +<i_y" +d2’).

9.5. DISTANCE IN COSMOLOGY

We are led, from the discussion in the preceding sec-
tion, to consider how we are to define distances in cosmology.
Since we do have, in both Newtonian and relativistic cos-
mology, a world-time t, clearly the simplest definition of
distance would be to Say that the distance between two bodies
at time t is the length of the geodesic in the hypersurface
t = constant Joining them, (By this we mean that the hyper-
surface t = constant is itselr to be considered as a manifold,
and the geodesic is a geodesic in this manifold.) But such
a definition is of no practical use. Instead, we seek a
definition of an observational nature, which can actually be
used by astronomers to determine the distances of distant
nebulae.

If we know the actual size of a distant nebula, then
we can define an observational distance by

distance = qa/g , (9.15)

where d is the actual diameter of the nebula and & is the
observed angular diameter. Such a definition would be satis-
factory if some means of determining d were known. In prac-
tice, however, what is used is a definition based on the
apparent luminosity of a nebula or some star in it, and we
shall now consider how this may be done.

Let E be the energy radiated per unit time by the
distant nebula, and let T be the intensity orf radiation
received per unit area per unit time by the observer. Then
if we neglect the diminution of energy caused by the red-
shift, we can reasonably define the distance of the nebula

to be [E/MWI]l/g. But due to the red-shift, the energy of
each photon of light is reduced by a factor wlA»2 = (1 + 2),
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and the number of photons per unit time which reach the ob-
server is also reduced by the same effect by another factor
of (1 +2). To counterbalance this reduction then, we should

replace I in the above formula by I(1 + 2)2. We can then
define the distance 4, the luminosity-distance, by

E

d° = ArT U+ (9.16)

This is effectively the definition of distance used by astrono-
mers.

In the relativistic cosmology of section 9.3, we saw
that the metric can be put in the form

dr + r2(d6*+ sin® 4¢?)

ds¥= dt* [R(t)lz
: (1+ Lkra?

(9.16a)

where K = 0 or ¥1. It can easily be shown that for this
metric, if the observer 1s at r = 0 and is observing a
particle of the substratum at r = T the light from which

is reaching the observer at time t = tg, then
v, R(E,)
d = “*"*'-,‘—”'_—‘ . (9.17)
{ +ZKY‘1
For the de Sitter universe, K = 0 and R(t) = et/T. Then
using (9.17) one can easily show that in this case
z = dfr. (9.18)

No approximation is made here, and so for a de Sitter universe
we see that Hubble's law is exact and that the value of

Hubble's constant is T"l. Interpreting our universe accord-
ing to (9.18), the best estimates to date of the value of T

give T ~1.3 x lOlO years.

We note that the definition (9.16) of distance "involves
E, the absolute luminosity of the source, which is not ob-
servationally measurable. This definition thus appears to
suffer from the same defects as (9.15), where the diameter
of the source was not observationally determinable. But
from observations of nearby galaxies, whose distances have
been determined by other means and so whose absolute luminosi-
ties may be calculated, 1t appears that all nebulae have
roughly the same absolute luminosity. Since the observations
of interest in cosmology deal with the number of nebulae
which lie in a certaln range of distance from us, it is then
a good approximation to take all nebulae as having the same
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absolute luminosity.

There 1s still a flaw in this argument. We are observ-
ing distant nebulae as they were a long time ago, when they
were much younger than they are now. So in an evolutionary
theory of the universe, the mean age of the distant galaxies
as we see them is much less than the mean age of nearby
galaxies, and so there is no reason to believe that they will
have the same mean luminosity.

There 1s one cosmological theory based on the assump-
tion that, for privileged observers moving with the substra-
tum, the universe presents the same view, irrespective of
where they look around. This is known as the Perfect Cos-
mological Principle. This assumption, together with the
experimentally established expansion of the universe, lead
to the de Sitter metric as the background for the steady-
state theory. Since the mean density of matter must be
constant in time by the perfect cosmologlical principle, to
make up for the decrease that would be caused by the expan-
sion of the universe, matter must be continually created.

If fo is the mean density of matter, the rate of creation

may easily be seen to be

R one proton per liter
every 5 x 1011 years.

According to the steady-state theory, the average number of
galaxies per unit volume is constant; when galaxies run
away new ones get formed in their place from the matter that
is being created everywhere.

In contradistinction to this theory, any conservative
theory predicts that in the past the density of galaxies
was higher, and that more distant galaxies are older than
they appear to us to be. This is a point that can be checked
by observation. Optical observations are inconclusive in
this respect, but observations of radio galaxies tend to
indicate thatat large distances there are more of them per
unit volume than there are in the neighborhood of our galaxy.
This tends to support evolutionary models in preference to
the steady-state theory.

6.9. THE EVENT HORIZON OF THE DE SITTER UNIVERSE
We shall now take a closer look at the de Sitter:

universe to illustrate the occurrence of horizons in COSmo~
logical models. Consider the de Sitter metric in the form
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t .
dsz = Jt* - e’ /T(clr= 4 rr(dor+sin?bde?)),
(9.19)

The null-cone through the point r = 0, t = to has an equation
of the form r = r(t), and ds = 0 for displacements in it.
Then (9.19) gives

dr = = e_t/Tdt

which integrates to give

-t -t
re a7 (e T BT, (9.20)
The two signs correspond to the past ( sign) and future
( sign) null-cones respectively. Now at any particular

time information can be received only from events inside
the past null-cone through the observer. We thus see from
(9.20) that an observer whose world-line is r = 0 can never
receive any information from events occurring outside the
surface

_t/
= Te TA (9.21)

A surface of this sort is called an event-horizon.

I
possible world~line _.el
of traveling observer

[ty world~lines of
R,t= T 7 porticles of the
‘\ \ substratum,r, 0,

| observer O, ¢b constant
i r=0
\ | —~Particle A,r=r,

Past nuil-cone
of R.

N \ event P at which par-
§ \ ticle A of substratum
\ passes horizon of

\ observer,at time t=i,

= Te-t/T N

event horizon
of observer

N
geodesic, length)

Q
VAR

t=¢

fo
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The situation is illustrated in the preceding
diaggram. Vertical world-lines represent particles of the
substratum. Horizontal lines lie in surfaces of constant t.
Let us consider what the observer O sees while observing
particle A, which has r = r_ . By (9.21) this particle
crosses the observer's even% horizon at P in the diagram,
at time to =T log (T/ro). O can see A only at events on

A's world-line with ¢t <.to. 0 sees such an event by light

which travels along a null geodesic (dotted line from Q to
R in the diagram) and reaches him at time

T = T D°3 ( e—‘(.‘/rT—— e-"i?c/’"r)

and he then ascribes to A a luminosity~distance

'C/T - Ys

d = Tae e T

and a red-shift z = d/T. So in fact 0 sees nothing unusual
occur; as t qvtO the light takes longer and longer to reach

O from A, the luminosity-distance of A tends to infinity as
€ a’to and so does the corresponding red-shift. This is

quite normal in an expanding universe. The only peculiar
phenomenon 1s that A disappears over O's horizon at a finite
proper time to A.

At time t, we see easily that the geodesic distance
(in a surface of constant t) of A from O is

D= eJC/T

which is still finite at the point P. The velocity of re-
cession, db/dt, is

a1,
o GJtiT

- T

ety Lt

We thus see that this geodesically-measured velocity of
recession tends to the velocity of light as the particle
approaches the event-horizon. )
Now so far we have considered only an observer at r
But since the metric can be put in the form (9.19) with r
being an arbitrary particle of the substratum (or alterna-
tively, since the de Sitter universe is homogeneous ), the
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above conclusions apply to any observer moving with the sub-
tratum.

Finally we shall consider if O can obtain information
about what happens outside his horizon by sending a friend
out into space, and getting him to send a report on what he
sees. The world-line of such a traveling observer is indica-
ted in the diagram. We easily see that although his friend
will be able to see past O's horizon, he will not be able to
do so until he passes the point X, on this horizon, and after
he has passed that point he can neither return home to O nor
send any information back to O.

So we see that O can never obtain any information about
events outside his horizon, but he cannot neglect their
existence, as by himself traveling around, he can change his
horizon and find such forbldden knowledge. But once he knows
it, he can never return home.

To conclude this section, we note that even in Minkowski
space-time some observers have event-horizons.

AL

Uniformly accelerated
observer can have no
knowledge of this half

T T ENIIERE SISy

xz-t2=const
World ~line of uniform-
ly accelerated observer

e —— | O e e s
’ T, .

of Minkowski space N
\
AN N
N
\\(Dustnuﬂ—
cone of
\event P

This. figure shows the case of a uniformly accelerated

observer traveling in the x-direction. 1In suitably chosen
rectangular coordinates his world-line has equation x%—t2 =

const, y = z = 0. It is then clear from the diagram that
light emitted from events in the shaded region will never
reach the observer, who therefore has an event-horizon. But
of course no such horizon exists for inertial observers.
For a detailed study of event-horizons, and the assocla-
ted phenomenon of particle-horizons, in the case of_the
{ general metric (9.16a), see the article by Rindler.

1. W. Rindler, M.N.R.A.S: 116, 662 (1956).
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9.7. EPILOGUE

I want to finish this discussion of cosmology by saying
that in my opinion 1t is not worthwhile to work in theoreti-
cal cosmology at the present time. I think it would be
better to sit and wait for the astronomers to get more data
on the motion and distribution of distant galaxies. I think
it is the opinion of most people who work in that field
that one can expect in the next few years to obtain such
significant data, probably from radio-astronomy, and there
are also hopes of putting a telescope into orbit.
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