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LECTURE |

BOUNDARY CONDITIONS IN GRAVITATIONAL RADIATION
THEORY

1. In dealing with physical problems, we are often interested in the solution of
field equations with given sources, but with nothing known about initial condi-
tions. Therefore, we cannot solve the Cauchy problem, for although it is a very
natural problem for hyperbolic normal equations, its solution requires a detailed
knowledge of the field on an initial space-like hypersurface. However, in general,
a whole set of fields corresponds to a given distribution of sources, and in order to
find a unique solution of the physical problem we must specify some additional
conditions. For linear field equations these conditions may consist in prescribing
the form of the Green'’s function (e.qg., retarded, advanced, etc.). If we investigate
the field in the whole (unbounded) space-time we can ensure uniqueness by
specifying some appropriatoundary conditionst spatial infinity. This latter
approach has the advantage of being applicable to nonlinear equations such as
Einstein’s gravitational equations. These boundary conditions, first formulated for
a periodic scalar field by Sommerfeld [1], have a definite physical meaning. For
example, the “Ausstrahlungsbedingung” of Sommerfeld means that the system
can lose energy in the form of radiation, but that no radiation is falling on the

1 These lectures were delivered at King’s College in London in May—June 1958. They are published
here for the first time, with the kind permission of the author. The publication was approved by two
referees, as is the rule for newly published papers. A few minor linguistic corrections have been
introduced, with the approval of the author.
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system from the exterior. We propose now to reformulate Sommerfeld’s radiation
condition so as to exhibit its physical meaning [2] and to generalize this condition
to the case of Einstein’s theory of gravitation [3].

2. Let us first take thecalar wave equation

A¢p —poo=—4nf 1)

and assumef(r, ) to be a regular function vanishing outside a bounded 3-
dimensional regiorV. The retarded solution of (1) can be written in the form

o(r, 1) =/ MdV’, R=1r—r'|. 2
v R

From the formula (2) we obtain the following asymptotic valuespoand its
derivatives®

¢ = r*l/ f t—RydV + 072,
Vv

b= kafl/v folt',t — RV’ + 0(r~?), (©)

where
k* = (1,n°), n' =x"/r 4)
is a null vector field.

Now, we can formulate the following boundary conditions to be imposed on
solutions of (1):

¢=00"h, (5)
there exists a functiogr = O (1) such that
b= Vky + 002, (6)

wherek,, is given by (4)
We see from equations (3) that every retarded solution of (1) fulfills (5) and
(6). Conversely, if the condition (6) is fulfilled, them satisfies Sommerfeld’s
radiation condition
lim rk%p o = lim r (3¢/0t + 3¢ /dr) = 0.
r—0o0

r—>0o0

2 F4 = O(r~%) means that there exists a constahsuch that, for sufficiently large we havg F4 | <
Mr~*: Greekindices runfrom 0to 3, Latin, from 1 to® = ¢, (x1, x2, x3) = r; acomma followed
by an index denotes partial differentiation. The summation convention will be used throughout.
Indices will be raised by means of the Galilean metric tem&br(n°° = 1, n'* = —s'%, ' = 0).
Square brackets stand for alternation, &@,5.4] = Fuia + Fiap + Fau. — Faruw — Frua — Fuan-
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Thus the wave equation with a spatially bounded source has always one and only
one solution fulfilling our conditions (5) and (6). This is the retarded solution.

If we replace (4) by = (1, —n®), we obtain the conditions which charac-
terize advanced solutions of (1).

Let us introduce the energy-momentum tensor of the field

Tt = L8, — ¢, 0L/36,, where L = —*¢ 4¢ 5/87.
From the asymptotic expression fpg, we havelL = O (r—%) and
ATy = V2kuks + O(r~3). @)

Thus the asymptotic form df,, resembles the energy-momentum tensor of
a perfect fluid with vanishing rest mass. We can obtain from (7) the time rate of
radiation of energy and momentum:

4T W, = 4r f T, ndS = f V2k,dS.
S S

The integrals are to be taken over the surface of a sphere “at infinity.” The condition
(6) ensures that/y > 0.

3. The situation is somewhat more complicateélgctrodynamicecause
of the gauge-invariance. Maxwell’s equations

S ==t fun = A — A 8)
can be reduced to four wave equations
AAY — AV oo = —4mjH (9)

if one imposes on the potentiafs* the Lorentz condition
A%, =0. (10)

We can impose conditions like (5) and (6) df satisfying (9) and (10).
It would perhaps be more satisfactory if we formulated the boundary conditions
in a way involving only thefield f,,, and not the potentiald®. However, the
chosen conditions will be more suitable for a straightforward generalization to the
gravitational case. The curreftt will satisfy the same regularity and boundedness
conditions as didf in the scalar field case.

We formulate the boundary conditions as follotf®re exists a potential#
satisfying

Af=00™h (12)
and four functions
B* =001 (12)
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such thatA, g = Bykg + O(r~2), and
Bk = 0(r 7). (13)

It should be noted that there are many sets of functidtisvhich satisfy
Maxwell's equations (8) and the conditions (11)—(13), but they differ only by
gauge transformations and all represent the same electromagnetic field.

From equations (12) and (13) we obtain the asymptotic form of thefield

fur kB —ky By,  kgBY =0, (14)

or, in vector notation:

E=(Bxn) xn, H=Bxn, B* = (B°, B), k% = (1,n).

Equations (14) represent a system of “gauge-invariant” boundary conditions.
The electromagnetic field has asymptotically the form of a plane wave. For the
energy-momentum tensor

47TT;1,)» = Z]inu.)\faﬁfaﬂ - fuafka
we obtain the expression
47T, = —By Bk, k) + O(r~3).

Sincek, is a null vector, it follows from (13) thaB, B* < 0 for sufficiently
larger.

The total charge contained in the field can be calculated by means of the
Gauss law

Are = 7§ FROukas.

Though £*0 contains terms going ag i, nevertheless s finite by virtue of (14).

4. In physics we are ordinarily interested in conservation laws which have an
integral character. A classical conserved quantity is a functigfa)] depending
on a space-like hypersurfaee A conservation law is the statement that, by virtue
of the equations of motiory, does notin fact depend @n As is known, in general
relativity the energy-momentum tensor of matfgs does not by itself lead to
an integral conservation law. However, if we introduce an energy-momentum
pseudotensor of the gravitational fielg" = (3,G + ¢*f ,8G/3g*" ;) /2,
then the suni,f -‘FLM)‘ is divergence-free by virtue of Einstein’s equations ¢17)

3 We shall sometimes writ€ = G to meanF = G + O(r—2).

4gM will denote the metric tensor of the Riemannian space-tihe Underlined let-
ters denote tensor densities with respect to affine coordinate transformatibns=
\/77ggu)L (Faﬂﬂrﬁ}»a - Faukrﬂaﬁ)-
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The Einstein tensor density * = /—g(R,* — 28,*R) can be written in the
form

G =w(t,+U, ™), (15)
where the “superpotentialﬂﬂa" are given by [4]
2U," = =888, ¢ gup.c = ~ 26U, M. (16)
If Einstein’s equations

G/UL = _KT/UL (17)
are satisfied, then equations (15) and (16) imply
A A A A A _
r, 4+, =0, thus@ +15,=0. (18)

The functions MA are not components of atensor density (essentially because
ofthe equivalence principle) and many physicists (e.g.,&ftihger [5], Bauer [6])
have raised doubts as to their physical meaning. Einstein [7] and F. Klein [8]
formulated some conditions which enable us to consider the integrals

PM[U] :/ <Zua +£Ma> dS, = ﬁguaﬂd&xﬂ (19)

as representing the total energy and momentum of the system matter plus grav-
itational field. These conditions can be summarized as follows: Let us take an
isolated system of massesLC = 0 outside a bounded 3-region) aassumehe
existence of coordinates such that [9]

G =N+ 00, gue=00"?), (20)

wherer denotes the distance measured along geodesics from a fixed point on a
space-likes. Equations (20) have a double meaning: they constitute a system of
boundary conditions and they distinguish a set of co-ordinate systems (“Galilean
at infinity”).

Using (18) it can be easily proved that:

1) P,[o] calculated from (19) in a co-ordinate system satisfying (20) is
always finite and does not depend®n

2) P, is unaltered by a co-ordinate change which preserves (20) and reduces
to the identity forr — oc;

3) P, is a vector with respect to linear orthogonal transformations. The proof
is based on the vanishing of the integrals

P = / (T, +1,MdS, (21)
p)

taken over dime-like“cylindrical” hypersurfacex at spatial infinity (note thag
appearing in (19) is the intersection Bfando). The vanishing of these integrals
is ensured by (202&A is quadratic irg,».«) and our assumption dfj,; (Fig. 1).
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Figure 1.

The proof of part 2) of the Einstein-Klein theorem is as follows. Let us take
two space-like hypersurfacesando’ and choose on two coordinate systems
x7% andx;;* which coincide at infinity and satisfy the conditions (20). Now,
introduce two coordinate systems in the whole space-time which are identical on
o’ and coincide respectively witly* and withx;;* ono . Betweers ands’ these
coordinates are supposed to satisfy (20). Applying the Gauss theorem twice to (18)
in the region lying betweea ando’, and taking into account, = 0 = p/,/ we
obtain P![0] = P,[o'] and P![0] = P,[0’], and thusP![o] = P!'[5]. The
integrals (21) can eventually be identified with the total energy and momentum
radiated througltx, and Lichnerowicz's boundary conditions (20) automatically
exclude the existence of any radiation.

5. Comparison with electrodynamics suggests that radiation fields in general
relativity should be characterized gy, « ~ 1/r, rather than by, o ~ 1/r2.
However, if the integrals (21) do not vanish, the proof of the Einstein-Klein theo-
rem s no longer valid and fresh doubts as to the meaning of (19) arise. We propose
to generalize the boundary conditions (20) in such a way as to include radiation
fields. We expect that these conditions will ensure the finitened}, aind that
P,, will not change with coordinate transformations which reduce to an identity
for r — oo and preserve thierm of the boundary conditions. The dependence of
P, ono will now correspond to the loss of total energy by radiation.

Fock [6] proposes to normalize the coordinate systems by means of de
Donder’s relation

¢ =0 (22)

and imposes o, the radiation condition of Sommerfeld. We find this for-

mulation somewhat stringent. In particular, we see no reasons for restricting
ourselves to harmonic coordinates only. There is no convincing argument for
writing the Schwarzschild line element in harmonic coordinates instead of, say,
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in the isotropic ones. The possibility of introducing privileged coordinates in
Riemannian space-time is known to be closely related to its symmetry properties
[10]. Galilean coordinates and Lorentz transformations reflect the homogeneity
and the isotropic properties of flat space-time [11]. The flat metric tensor is
invariant in formwith respect to Lorentz transformations, which constitute a 10-
parameter group of motions of space-time. Fock’s “Lorentz transformations” ( =
linear orthogonal transformations in curvilinear, harmonic coordinates) have not
this property. However, if a space-time is flat at infinity, it seems reasonable to
distinguish a set of coordinates which exhibit this “asymptotical symmetry” and
this is the meaning of conditions (20).

We generalize the conditions of Fock along the lines presented in the pre-
ceding sections. First, introduce a null vector figtddefined as follows. Let*
be a unit space-like vector lying i, perpendicular to the “sphere”= const.,
and pointing outwards. We pét = n* + %, wherer® denotes a unit time-like
vector normal tar, such that® > 0.

Now, we formulate the following boundary conditions to be imposed on
gravitational fields due to isolated systems of mattere exist coordinate systems
and functions,,;, = O(r~1) such that

=N+ 00N, guia=iuke + 0073, (23)

(i — 2munPiep)k* = 00r72). (24)

These conditions correspond to the “Ausstrahlungsbedingung” of Sommerfeld;
we obtain the “Einstrahlungsbedingung” if we assugfido be inward-pointing
instead of outward-pointing. Relations (23) and (24) togetheraeketthan (20);

this means that every field fulfilling (20) satisfies also conditions (23) and (24)
and that the class of coordinate systems distinguished by (23) and (24) is larger
than that defined by (20). Equation (24) restricts the coordinate systems to those
which are asymptotically harmonic; however, it may be noted that, for example,
the isotropic coordinates used in Schwarzschild space-time are asymptotically
harmonic in this sense.

Strictly speaking, the justification of conditions (23) and (24) should await
the proof that Einstein’s equations with bounded sources have always exactly one
solution satisfying them.

6. We shall now present some consequences of (23) and (24). First of all, we
shall examine the convergence of the energy integrals (19). The superpotentials are
linearing .« and thus go as/k; we must therefore show that the terms behaving
as 1/r cancel out in the surface integral (19). Indeed, the surface eleisgnts
proportional tou; ., = n[k,], and the terms in question in (19) can be written as
nﬁ[“aﬂ”nﬂfz‘aﬂkfk[vm]. Taking into account (24) we verify that this expression
does vanish.
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Let us take a coordinate transformation
x% = 2% =x% +a%(x) (25)
fulfilling the conditions
a®=0(@),  agp=boks+ 002, (26)
wherea, = nepa’, by = 0(r~1), and
o s = baukr + 0072, bas =001 (27)
From equation (27) follows the existence of functieps= O (r 1) such that
by = ciky + 02, (28)

Coordinate transformations (25) satisfying (26) and (27) presenrfertmaf
the boundary conditions; this can easily be seen from the transformation formulae
for g, andiyy:

g/l)\(x/) = guk(x) + b/ka + bkkua

i (X)) Z i (0) + ek 4 caky. (29)

Computing the superpotentials in both coordinate systems and taking into

account the relations (23)—(29) we obtain
UM nly = U, ganay + 03,

Therefore the total energy and momentapis well defined by equation (19) and
the boundary conditions (23), (24). It must be noted that our prescription demands
that thecalculationof P, should be performed by means of (19) using coordinates
which satisfy equations (23) and (24). This does not by any means imply that the
energy is only a property of the coordinate system. The veRips] constitutes
aglobal characteristic of théield and it is only for computational purposes that
we must appeal to (23), (24).

7. The total energy and momentyy radiated between two hypersurfaces
o ando’ is given by (21), or by

pu=Pilol = L = [ 1,045,
z
(T,,. vanishes ork). The boundary conditions enable the estimatiop gf we
have in fact
1, =akk"+ 03 (30)

where
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e = i“)‘(iﬂ;h — %numaﬂiaﬁ). (31)

A~

« is “= invariant” with respect to the transformation (29) andids-negativeoy
virtue of (24); thereforepg > 0. The existence of radiation is characterized by
pu# 0.

We could also take a more general case, including the electromagnetic field.
The boundary conditions fqy,.;, should be supplemented by those fag given
by (14). We obtain in this case, * +1,* = ak,k* + 0(r—3),0< @ = 0(r~?).

8. Pirani[12] and Lichnerowicz [13] proposed recently definitionguwkra-
diation fields. It may be interesting to compare their definitions with our approach.
Let us admit the additional but reasonable assumption that the second derivatives
of g,x also go to 0 as Ar and thatg,;. op = iy pka. Fromi okg = i pka
follows the existence of functiong,, = O (r~1) such that

Sunap = jukakp,  Gun — 3001°? jup)k™ = 0. (32

For the curvature tensor we get

Rurap = 3kiuiake) (33)
The principal part ofR,,.s has therefore the same form as a discontinuity of
the Riemann tensor [14] and is thus of type Il, with vanishing scalar invariants,
in the Petrov-Pirani classification [12]. It is interesting to note that the plane
gravitational waves discovered by Bondi and Robinson [15], [38] are also of type
Il “pure radiation.” It seems that in the theory of gravitation we have essentially the
same situation as in electrodynamics: a gravitational wave produced by a system
of bodies behaves at large distances locally as a plane wave. L. Marder pointed out
that the Riemann tensor of outgoing cylindrical waves [16]-[18] goes for large
like »=%/2 (r denotes here the “radial” coordinate) and is asymptotically of type
1. This result seems to confirm the general theory; the behaviour 1iké is to
be expected for fields with cylindrical symmetry.

The terms proportional to/k in R, cancel out by virtue of (24). Conversely,

R, = 0 and equation (18) implR,1es = 0 unlessk, k* = 0. If we take into
account the electromagnetic field, Einstein’s equations can be written in the form

Ry = Bkuks + 003,  B=00G"2). (34)

Moreover, it follows from (33) that
k[ Rya1py =0, k*Rpap = 0. (35)

If one replaces the asymptotic equalitidy strict ones, then equations (34) and

(35) become Lichnerowicz’s conditions [13] characterizing a pure radiation field.
Our boundary conditions contain not only the characterization of the field but

also some conditions on the coordinates. It would be very interesting to formulate
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purely geometrical boundary conditions (e.g. in terms of scalar invariants of the
curvature tensor). But the principal unsolved problem is rather whether there are
any non-stationary gravitational fields produced by bounded systems of matter
and flat at spatial infinity. The theory presented here has of course been developed
on the assumption that such fields exist.

LECTURES Il & 111
EQUATIONS OF MOTION AND GRAVITATIONAL RADIATION

The practical applications of electromagnetic radiation theory are connected
with the possibility of producing waves with arbitrary time-dependence. Maxwell’s
equations impose no conditions on the motion of charges; by means of nonelec-
trical forces we can move them in a quite arbitrary way. The situation is different
in General Relativity: here the field equations restrict the motions of masses, and
the question arises whether or not these restrictions may prevent gravitational
radiation from taking place.

The connection between Einstein’s field equations and the equations of mo-
tion has been known for a long time and is quite elementary; for example, if we
write the field equations for a perfect fluid without pressures

G = —kTH = —kputu*, Q)

then, from the Bianchi identities we ha@é“‘;x = 0 which impliesT**.; = 0,
or

(pu*),, =0  (2a), and  pDu/ds=0. (2b)

Equation (2a) expresses the law of conservation of mass and (2b) states thatthe tra-
jectories ofu” are geodesicdf denotes the absolute derivative). This idea can be
generalized; let us take a classical field (g@t) interacting with “pole-particles”
and assume that the field equations are derivable from a Lorentz-invariant varia-
tional principle. Entirely from considerations of invariance (Noether’s theorem),
we obtain the following identity [10]

T, + M*(eqs of motion) + N*(field eqs) = 0,

where T#* is the total energy-momentum tensaZ* and N* vanish if the
equations of motion and the field equations are satisfiedMitid= 0 implies

the equations of motion. In special relativity, we infer the conservation laws from
M* = 0 = N*. In the theory of gravitation, wherg** acts as a source of the
g-field, T#*., = 0 musthold (because of the Bianchi identities) anavif = 0
thenalsa# = 0. Itis not necessary to postulate separately a dynamical principle
for the motion of particles in general relativity.
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As is known, Einstein regarded the energy tensor as a temporary means
for the description of matter and sought for a description of nature in terms of
purely “geometrical” fields. One of the provisional solutions was to treat particles
as singularities in empty space-time. The main purpose of the famous paper by
Einstein, Infeld and Hoffmann [19] was to show that the motiosin§ularitiesis
also determined by the field equations and to work out an approximation method
suited to the calculations of relativistic corrections to the Newtonian motion of ce-
lestial bodies. The equations of motion were obtained from the vanishing of some
surface integrals surrounding the singularities which expressed the integrability
conditions for the approximate field equations. The original method of EIH was
improved in a later paper by Einstein and Infeld [20], by the introduction of some
pole and dipole terms in such a way that the integrability conditions were satisfied
automatically. The equations of motion were then obtained by setting equal to
zero the sums of these pole and dipole moments.

The problem of motion was attacked also by Fock [21], [22], [11] and his
students [23], [24]. They used the same approximation method as Einstein and
Infeld did, but the bodies were represented not by singularities but by a continuous
energy-momentum tensor with pressures. Fock fixed the space-time coordinate
system by the de Donder condition and obtained the equations of motions of the
centre of inertia of a body by integrating the equatigffé*., = 0 over the 3-
region occupied by it. He obtained also some equations for the internal motion of
rotating bodies (from the equatiorfscl! 7K. , gdV = 0).

Infeld [25] introduced an energy-momentum tensor involving Dé-danc-
tions for the description of pole particles. This produced a great simplification in
the derivation of the post-Newtonian equations of motion (obtained ¢,
=0).

Einstein, Infeld and Hoffmann had assumed certain forms of series expansion
of the metric tensor which by analogy with electrodynamics they interpreted
as corresponding to the choice of the symmetric (half-advanced, half-retarded)
Green's function. Infeld [26] wrote down the first terms dp, corresponding
to the choice of a retarded Green'’s function and showed that they did not give
any contribution to the equations of motion up to the 7th order (the Newtonian
equations are of the 4th order and the post-Newtonian ones — found by EIH —
of the 6th order). N. Hu [27]worked out the radiation terms in the next step
and found “anti-damping” — the energy of a system of two bodies appeared to
increasewhen the radiation was taken into account. The first radiation terms are
functions of the time alone and several papers dealt with the problem whether
they represent a “true” gravitational field or could be “annihilated” by a co-
ordinate transformation [28]—[3l]. An answer to this question will be proposed
below.

The extent to which the equations of motion do depend on the choice of
coordinates is a problem which has drawn some attention in recent years [32]-
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[34]. We shall briefly discuss this and some other aspects of the EIH method,
mainly those related to the problem of gravitational radiation.

1. The “new approximation methdd_et us again start with the scalar wave
equation

O¢ = A¢p —¢o0=0, 3

and introduce the timeinstead of the “cotime®=cz. Ifa solutiong (x°, x¥, ¢) =

o (ct, x*, ¢) of (3) can be expanded into a power series/in 1
o
= Pt x5, 4)
n=0 n

then the functiong satisfy
n

A¢ =0, Ap =0, Ap=é¢,....Ap= ¢ ... (5)
0 1 2 0 k k—2

(the dots over the’s stand for derivatives with respect td. The structure of

(5) is such that wecan, if we wish, find solutions (4) containing only even or

only odd terms. Ifwe pu$p =0, ¢ =0(®r = 1,2,...), start with the pole
0 2n—1

solution in the second ordep;= a(r)/r, and take the simple solutiogs= %dr,
2 4

¢ = (@)~ 1r3d%dr?, . . ., then we obtain the standing wave solution of (3):
6

20 =a(t —r/c)+a(t+r/c).
A retarded solution can be obtained if we introduce a “first radiation term” in the
3rd order:

¢:Oa Cb:O’ ¢=a/r7 ¢=_a’
2 3

0 1

A
I
Nl
Q:
=

o=@ ar? ...;p=at—r/c)r.
5

Itis important to note that = O (+"~3) forr — oo and this is also a general prop-

n
erty of solutions of the inhomogeneous wave equation with a spatially bounded
source. Ifa is the characteristic wavelength of the field, then we can safely stop
after the few first terms of the series (4) only in the region where

r <A (6)

In other words the new approximation method of EIH is not well suited for the
description of a field in the wave zone. If we write Maxwell's equations in the
form
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OA% = —4xj“, A%, =0, J*«=0 @)

and assume thgt is of order 2 andj* of order 3, then theetardedsolution of
(7) can be expanded into a power series as follows (in future we shallpdit):

0 _ 0 / r_ O / l_l O 7
AS(r,t) = | j(r',t)/RdV J.odV 4+ (2 J.ooRAV + ...
2 2 2

k k k
Ak(r,z):/j(r’,t)/Rdv’—/j,odv’Jr(2!)—1/j,ooRdV’+....
3 3 3

The conservation of charge implig8 = 0 and the firstradiation term appears only
3

in the 4th order 4). For large values of and forn > 3 we haved® = 0 (+"4).
4 n

In the linearized theory of gravitation the situation is similar but the radiation
terms are shifted still further along the series. If we wité = /—ggh* =

n* — y#* and assume de Donder’s condition$ ; = 0, then the linearized
Einstein’s equations become

Oy* = +16xTH, TH ;, =0. (8)
7% can be assumed to be of order?* of order 3 andr’*’ of order 4. This

corresponds to the EIH assumption that the mass is of 2nd order. Expanding into
a power series the retarded solution

Y, = —4/dv/TW(r/, t—R)/R (9)
of equation (8), we find that

7%+ 7%, =0 implies y®°=0, and
2 3 3

70+ 7" ;=0 implies ¥% =o0. (10)
3 4 4
Thusy¥ is the first non-vanishing radiation term, and from (9) and (10):
5
Y =0@"% for n>a4 (11)

In the theory of gravitation we have

o
gur = Z ;%’ s (12)
n=0
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whereg,, = n, andg,;, = 0. ExpandingR,,, into a power series we obtain
0 1
equations fog ,, which, in empty space-time, have the form
n

0= Ry = linear function of & ;5 ik, &
n n

uhi> & uh
n—1 2

n—

+ nonlinear function of & .5, ..., & ..
2 2

ne

Thus a solution for any ., will contain both terms of linear origin and terms of
n

nonlinear origin. For example

g oo = term coming fromg + terms coming fromg - & .
4 2 2 2

The first terms give rise to the same limitation as in electrodynamies: A. If
we apply the EIH method to a system of bodies whose masses are ofnorder
then the nonlinear terms #go contain expressions like?/r2 and we must have

4

r > m. Further, ifv is a characteristic velocity ariddlenotes a distance between
the bodies we must have= [ « A orv « 1. In sum, the applicability of the
EIH method is limited by the following conditions

mLr LA, v L

The first of these inequalities, which is connected with the nonlinearity of Ein-
stein’s equations, is common to this and other approximation methods. The second
and third limitations are due to the distinguished role played by the time in the EIH
method. It follows from these that the method is not well suited to the description
of radiative phenomena.
The linear part og ., can easily be calculated from (9). We may expegt
n n

also to go liker"=° (n > 4), unless some nonlinear termsgin, cancel out the
n

r"~Stermsin the linear part. In general, we cannot impose oaxpandednetric
the condition lim_. & ., = 0. However, this does not necessarily mean that the
n

metric is non-flat at infinity.

2. Equations of motianThe equations of motion of singularities were ob-
tained by Einstein, Infeld and Hoffmann [19] from the vanishing of certain surface
integrals. The basic idea of this method can be explained in terms of electrody-
namics; there the conservation of charge is an “equation of motion” which follows
from the field equations alone. Assuming tigthas been expanded into a power
series, we can write Maxwell’s equations in the form

AQss = A 5,50, (133)
n 1

n—
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A r,ss — A s,rs — A r,00 — A0,0r (13b)
n+1 n+1 n—1 n

If, as before, we pup, = A, = O, thenA o satisfies a Laplace equation and
we may taked g = e((;)/r Wﬁeree(t) is an ;rbitrary function of time. Equations
(13b), which 2in the present case become

rot roté = —grad éo, A = (A1, Ao, A3) (13c)

are not independent; the divergence of the left hand side of (13c) vanishes identi-
cally (“strongly”). The divergence of the right-hand side also vanishes, by virtue
of (13a). However, this is not sufficient to ensure the integrability of (13b) or
(13c). The flux of rot rot,g\ through a closed surface vanishes, and so also must

the flux of gradé 0. The equatiomfzxo = 0 tells us that the flux of gradzio

does not depend on the shape of the surface (provided that we do not cross the
singularity when deforming the surface). This means that the vanishing of the flux
imposes a condition only on the singularity itself. We can calculate the flux of
—grad f2& o through a sphere = const; this turns out to be#. Thereforee must

be a constant.

The situation is analogous in Einstein’s theory and can be presented in a
concise form if one uses the superpotentials [4] (lecture ). The empty space field
equationsG ,* = 0 may be written

k Ok k _
Qus .8 + QM ,0 TL = 0. (14)

Contracting withny, and integrating over a closed surface we obtain (sl_m/g@
is skew ink ands!)
% f U, %nids + 7§ t, nidS =0, w=0,123. (15)

If we have an exact solution of the field equations, then (15) is identically satisfied
and does not tell us anything. But if we use the EIH approximation method, and
if we expand (14) then the conditions (15) written up to/ttle order will contain
only known fields (of ordek /) and will give non-trivial equations of motion (for
w =1, 2,3). Equation (15) fopx. = 0 gives the conservation of energy.

Let us illustrate this by the simplest case, the Newtonian equations. From
12300 = 0 we have

A § 00=0. (16)

As a solution of this equation we may take
é’oo = —ZZm/r, (17)
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wherem denotes the mass of a body an distance from it; the summation is
to be carried out over all particleg.;x = O gives the equation f ;«; it appears
2 2

that a possible solution is

8 ik = Sik & 00 (18)
2 2

The lowest order fields are linear in the masses and therefore can also be evaluated
from (9); gox is at least of order 3 and the problem of radiation does not appear
before the 5th order. The knowledgegdo andg ;i is sufficient for writing down

2 2

the following surface integral

d k0
L b UgOnds =0
dtj:ﬁ?o e

(to* is of order 5 at least). Evaluating this integral around each of the singularities,
we get

m = const

The field equations fog Ok

8 Ok,ss — 8 Os,ks = 8 ks,0s — 8 ss,0k
3 3 2 2

are now integrable (sinoe = const. !) and lead to
Sov=Y 4my*/r 19
$ 0k Y 4mit/ (19)

whereyk = yk () are the coordinates of a particle, as yet arbitrary. The following
surface integrals give thHgewtonian equations of motion

d
— fgikonkds + f{ikonkds =0.
dat J 3 4

Infeld [25], [37] developed a formalism in which particles are treated as
singularities described by meanséofunctions. In this formalism it is necessary
to define the value of some singular functions on the world lines of the particles.
If ¢(r, x*, y*(¢)) is a function depending on a world-liné and singular on this
world-line (e.g.¢ = |r — y(1)|~1) then

¢ (1) = (¢ — part of ¢ singular ate = y),x_ .
For a regular functiop we can write

é = /¢(t, X y9)8@ (¢ — ) av. (20)
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Infeld and Plebaski [35] introduced some “good’ functions which allow us to
write an equation like thisAeven for singular functiopsThe modifieds(x) is
defined by its regular modél«, x) which possesses the following properties:

S(x)" =" Iimog(oc,x) =0 forx #0

IimofOo 8(ct, x) f(x)dx = f(0)  for a continuousf

o—>
o0 A~
Iimf S(a, x)|x| ¥dx =0 fork=1,2,...p
a—0)_~

The~ operationis not distributive in general but we shall assume thatitis so when
applied to functions occurring in our work8 = @B8. The energy-momentum
tensor density of a system of pole particles can now be written

o
=3 / B (x* = y*(@) ds = Tud (« = 4 @) d5/ar
—o0

(21)
wheres is defined bydE2 = g],?;dy“dy@ It was shown by Tulczyjew [36] that
b = moy®y'? (y* = dy“/d5) andmg = const. We can rewrite (21) in the

form
TP =) " my*iP8@(x —y), m=modt/d5, ¥ =dy"/dt.

The equations of motion are obtained by integraﬂﬁé;ﬂ = Zaﬁ,ﬂjtzw{ ;fk } =
0 over the neighbourhood of one particle:

w B2 uafa]a
Ozfzaﬂ;ﬁdV=/ |:(my“y’38(3)),ﬂ +my“y)‘{lm}8(3)]dv

) a|.,..
=(my*) + m{ }y“yl-
LA
It follows from this thatmds/dt = mo = const and that
d?y® (a) dy* dy
=0. 22
m0<d§2+{ }ds P (22)
The equations of motion of heavy bodies have thus also the form of “geodesic”
equations. We can eliminatk from (22) and write the 3 equations of motion in

the form
. k 01 ..\ .,.
5k + ({ } — { }yk> yHyt = 0. (23)
LA A
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—~

In this notation the Newtonian equations regd+ 2{ Sf)] = 0. It can be easily

seen from (23) that if we know the equations of motion ofitkth order, then we
will be able to write(n + 1)th order equations if we calculatg ;x, & or and
n—3 n—2
& oo. However, it has been shown by Baaski that in a Lagrangian formalism

n—1

[37], itis sufficient to know the explicit form of oo andg ox (and not necessarily
2 3
& oo) in order to write down the post-Newtonian equations of motion.
4
3. The arbitrariness in the choice of coordinatest us perform the coordi-
nate transformation

O=x%4 a0 (x), xk =% 4 gk (x"). (24a)
n+1 n

The first terms affected by it are = nepa’)

/
g o0o= & 0c0+2 a oo,
n+2 n+2 n+l

g o= 8 o+ a ox+axpo, (24b)
n+1 n+1 n+1 n

/
gik=8ikt+taik+a;.
n n n n

It can easily be seenthat(i ;x, & o, & oo)iSasolution of the field equations,
n n+1 +2

n

then(g’ i, & ok, &' oo0) isalso asolution of the same equations, representing the
n n+1 n+2
same physical situation in a different coordinate systemfdimeof the equations

of motion considered as functions of the y’s obviously depends on the coordinate
system used. Similarly, in the ordinary geodesic equation

YTy Y =6 (" Y ) =0,
the form of the functionG* depends on the coordinate system. More precisely
the equations of motion of order+ 4 (n = 0, 2, ...) depend on alo anda*
n— n

(and also on coordinate changes of lower orders). The form of the Newtonian
equations cannot be affected unless the Galilean charactgyzdb destroyed
0

by the transformation. The post-Newtonian equations depend on the chgi’i:e of
iNn &ix = 8ix 800+ czli.k + zzzk,i. The casezzk = 0 corresponds to the choice of
2 2 '

harmonic coordinates in this approximation.
Sometimes doubts are raised as to the physical meaning of conclusions drawn
from equations of motion which depend on the frame of reference. The answer
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to this objection is rather easy and can be made trivial by the following example:
consider the curve; = sinx». This is a sine curve if the metric i&? = dx12 +
dxo? or acircle ifds? = dx1° + x12dx2%. An equation of motion has no intrinsic
meaning of its own. It is only the knowledge of equations of motion (or of a
solution thereofandof the corresponding metric which enables us to draw some
physical (observational) conclusions, e.g., as to the advance of the periastron.
In some special cases (e.g. static or periodic metric) it is not necessary to make
explicit use of the form of the metric tensor.

It is possible to simplify the equations of motion of a given order but only at
the price of complicating the metric [28,32].

4. Radiation terms in the EIH metho@he structure of Einstein’s equations
is such that weanchoose solutions of the form

goo=1+800+800+800+-..,
2 4 6
gok =8k +8ok +8ok+ ..., (25)
3 5 7

8ik=—0ik+8iuk+8iuk+8ik+...
2 4 6

By analogy with the scalar wave equation and Maxwell’'s theory we can interpret
solutions of the form (25) as representing standing wave fields (no secular losses
of energy by radiation). It is only these solutions which were considered in the
classical papers on the EIH method [19-25]. In order to get solutions correspond-
ing to “retarded” or “advanced” fields we must supplement the series (25) with
the missing terms: odd igho andg;, and even irgg; (“radiation terms”). The first
of these radiation terms satisfy lindemmogeneousquations and we may expect
they are linear in the masses and hence their form can be derived from the linearized
theory. The electromagnetic analogy suggests that the first radiation terms depend
only on time and apparently can be removed by a coordinate transformation (24a);
e.g., ifgoo = f() andzz 0= —% [ f@)dt theng’ oo = 0 [28-30]. However, the

5

whole field(8 ;x, & ok, & o0o0) can be annihilated by means of (24a) when and
n n+1 n+2

only when the following conditions are satisfied:

8 00ik +8ikoo— & ioko— & k0.i0=0,
n+2 n n+1 n+1

5 Some of these remarks are due to discussions with Dr.W. Tulczyjew. The topics raised in this lecture
are thoroughly discussed in a monograph on the problem of motion in general relativity which is
being prepared by Professor L. Infeld and Dr. J. Pieslza [Note added by the Editor: The reference
is: L. Infeld, J. Plebaski, Motion and relativity PWN and Pergamon Press, Warsaw and Oxford
1960.]
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8 Om,ik + gik,Om - 8 Oi,km — 8 km,0i = O’ (26)
n+1l n n+1 n

8imkl + &kiim — 8ilkm — 8 km,it =0.
n n n n

That is to say, equations (26) constitute a system of necessary and sufficient

conditions for the existence of funcuons 0 andak suchthate’ jx = g’ o =
n n+1
g oo = 0. It was remarked by Goldberg [31] that starting V\Eth fik (@) we
n+2
can choose solutions of the field equations in@e- 1)th and(n + 2)th orders
such that the conditions (26) will not be satisfied. However it must be noted that
since the solutions of the field equations are non unique, we can also start with

the sam@ ix and obtain functionsg o, and & oo which can be annihilated. For

n+1 n+2
example the field
8ir = fir(t), 8 ok = 3x* fux, g€ 00=0
n n+1 n+2
is flat, but the field
8ik = fik(@), g o =0, g o0=—r%fis/6
n n+1 n+2

is empty and non-flat unles&; = 38 fis (spherical symmetry), namely
8 00k +8ik00— & i0k0— & k0i0= fik — %Sikf;s~
n+2 n n+1 n+1

The exact form of the first radiation terms for a system of point particles can be
obtained from (9). Théinear partof g .4 is connected to o4 by the equation
n n

§273ear = naunﬁk( Z "h— %n“knnp 3!/ zrp). (27)
From (9) and (27) we have
zgik =0, (28a)
Ok ok
Eok=—V =-4 =0. 28b
§ ok 4 > my (28D)

The last equality holds by virtue of the Newtonian equations of motion [26] and
is to be read)_ m3* is at least of order 6.

2 d?
§00= aX:dtsmr —l—ZZ—my v (28c)

The field defined by (28) is trivial and can be annihilated by a coordinate transfor-
mation. It was shown by Infeld that this field does not contribute to the equations
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of motion of the 7th order. The next radiative se( &ik, 8 oks 8 oo) and we have
5 6 7

from the linearized theory:
d ... 143 , _d .
Sik = 4y 2 MYV ik > (§ St = 2omyy (29a)

4 a3
_ sk T -~ 2.k
ow=—4Y mit — 3 3 Smr®it. (29b)
The equation f057’ oo is inhomogeneous and must be solved. We obtain
2 d5 4 2 d3 2:5:8
B0 =g 2 g g 2 gE Y g
+(8 00+ %833)800- (29¢)
5 5772

The fields (29) cannot be annihilated by a coordinate transformation.

5. Radiation damping in the problem of two bodi€savitational radiation
does not occur in the 4th (Newtonian), 6th (post-Newtonian) and 8th (never
explicitly evaluated) approximation orders, but it can occur in the 9th order. It
is not possible to write down the equations of motion up to 9th order explicitly
because we do not know the contributions of order 8 (the knowledgekof,s’ Ok

andg oo is needed for this). However, in some simple cases we can foresee the
6

form of 8th order contributions and write down the 9th order corrections.

Let us take the example of two bodies of equal matisat in the nonradiative
approximations move uniformly along a circle of (coordinate) ra&til/e choose
the origin of the spatial coordinates at the centre of inertia and denotibythe
coordinates of one of the bodies. The equations of motion up to 8th order have
the form

j}k _I_a)z (m’ ysys’ )')kyk’ ymym) yk — 0
and admit solutions of the form
y! = R coswot, y2 = R sinwot, yi=0. (30)

The 9th order corrections can be evaluated from (23) using the field given by (29).
It turns out that the equations of motion up to 9th order have in our case the form

FE + 20 (m, y*y*, 3"y™, 9"9") ¥+ w?yk = 0. (31)

Herew is of 6th order and is constant by virtue of (30); a laborious computation
gives

@=——. (32)
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Table summarizing the information necessary to obtain the equations of motion from the “geodesic”
equation (22)

Equations these Equations Orders of non-vanishing com-

of Orders of fields of motion ponents of the Riemann tensor
motion needed depend depend derivable fromthe correspond-

of order fields on on ing field

8ik 8ok 8o A0 ar ao Ak  Riook  Rioki  Rikim

4 (Newtonian) 0 1 2 1 0 - 0 2 - -
6 (EIH) 2 3 4 3 2 1 2 4 3 2
8 (not evaluat.) 4 5 6 5 4 3 4 6 5 4

6 5 4 5 7 - -

9 (1stradiat. corr) 5 6 7

w? contains a nonlinear term of second order so that the equation (31) is in reality
nonlinear. The damping termx2* excludes the possibility of periodic solutions.

Itis not easy to give a clear physical interpretation to this result; in particular we do
not know if the diminishing of theoordinatedistance between the particles (due
to«a > 0) is accompanied by a decrease of ¢le@metricaldistance. However, it
seems to be proved by this contribution that gravitational radiation induces secular
changes in the motion of bodies.

LECTURE IV
THREE PROBLEMS OF GENERAL RELATIVITY

1. Propagation of gravitational disturbanceRinstein’s field equations are (for
physically acceptable metrics) of the hyperbolic type, and as such admit non-
analytic solutions. The existence of such solutions is essential for the transmission
of information [38]. Non-analytic functions can possess discontinuities in deriva-
tives of a certain order and it is of some interest to study the form of these
discontinuities. They can occur, for example, at the front of a wave and the
knowledge of their behaviour can provide some information about the wave itself.
In electrodynamics we may assume that the discontinuities occur in the first
derivatives of the electromagnetic field. It turns out that the discontinuities can take
place only on null hypersurfaces. This means they must move with the velocity
of light. Denoting byA F the jump of a fieldF across the hypersurfagedefined
by f(x) = 0, we have [14]

AE o =efq, AH, =nxefq, n-e=0,
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wheren = grad f/|grad f|. The geometrical structure of the discontinuity re-
sembles in this case that of the plane wave. It will be seen that the situation is
similar in the theory of gravitation.

With Lichnerowicz [9] let us assume that the Riemannian space-¥irie
such thatthere exist (at leastlocally) coordinate systems in vghicts of clasgC?
and piecewise of clagg®. We shall restrict ourselves to these coordinate systems
only; therefore the admissible coordinate transformations will be of az&5(*
piecewise). The discontinuities @f,, s, acrossx (f = 0) can be written in the
form [14, 39]:

Aguirap =husfaf.p- 1)

By virtue of the assumptions on the differentiable structur&pthe functions
hyu, and

B = hus A hy fo 4 hofou (h, = arbitrary), 2)

represent (geometrically) the same discontinuity [40MR,,;.s = 0, then one

can chooséz, so as to obtairk),, = O; in this case the discontinuities have

no physical meaning and are due to the coordinate system. Assuming the empty
space-time equatior®,, = 0 we obtain some conditions @n,,, namely

gaﬂ (hw\f,af,ﬂ + haﬁf,uf,k - h/wzf,kf,ﬂ - hkﬂf,uf.a) =0. 3
If g% f, f g # O then (3) implies

h/l.)» = auf,k + akf,u

and the discontinuity is spurious. “True” discontinuities can appear only on null
hypersurfaces; in this case equation (3) is equivalent to [40]

(hy' = 38" 0 fo =0, g f,fs =0 (4)
andAR,,;p can be putin the form [13]
ARyap = MupMag — NyuaRag (5)

(m andn are simple null bivectors) corresponding to type Il with vanishing scalar
invariants [12, 41], (lecture 1). The local geometry of a gravitational disturbance
is thus the same as the local geometry of a plane wave.

Equations (3) or (4) constitute some algebraic conditions which must be
fulfilled by the discontinuities. However, if a field of discontinuities, is given
on a 2-surfacé lying on a space-like then its further propagation is determined
by the field equations. It follows from this argument that the conditions (4) should
be supplemented by some differential equations describing the evolutign of
time. We shall now derive these equations and apply them to study the propagation
of discontinuities in Schwarzschild space-time [42].
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Letus assume thagt = const s the equation of a family of null hypersurfaces
andX (f = 0) is one of them. The curveg* = x*(1) defined onz by

dx®/dr =g f 4 (6)

are null geodesics (they are bicharacteristics of Einstein’s equations) and it is
possible to obtain an equation describing the behaviour of the discontinuities
along these “gravitational rays.” Let us take a coordinate system in whiehx©
(thusg® = 0) and calculate\ R;; o = 0. These are equations we are seeking for,
but written in a non-covariant form. We can find the covariant equations imposing
on them the following conditions:

1) they should reduce tAR;; o = 0 whenf = x©;

2) they should determin,;, only up to a transformation (2).
The resultis

Z%AR}LMM +0OfAR,ap =0. (7

where
Of =g"* fiun ARupap = 5 f1uhalla f.p]-

The following properties of (7) are of interest: these ordinary differential equations
are linear and homogeneous AR, thus if AR, = O at a point of the
curvex® = x*(1), thenAR ;g vanishes along the whole curve. If the algebraic
conditions (3) are satisfied on an initial surfagethen they will be satisfied by
virtue of (7) on the whole ofE. If X is harmonic O f = 0) then the tensor
AR,ap is parallelly propagated.

As an example, let us consider the propagation of discontinuities in a space-
time which initially possessed the Schwarzschild metric

ds? = (1= 2m/r)di® — dr?/(L— 2m/r) — r? (d92 + sir? 9d¢>2> . (®)

Atthe timer = 0 onthe surface = rq there appears a discontinuity characterized
by AR08 (0, 0, 0, ¢) = AR,;4p(ro); it will propagate along a hypersurfage
with equation

f=t—F@r) =0, g”fufi=0,  F(ro)=0.
We find F (r) to be

— 2m
F(r):r—ro—l—Zmlogrr o (r > ro > 2m).
0 —

Solving (6) for the metric given by (8) one obtains the 2-parameter family of
geodesics:

t=r—ro+2mlog , 6 = const ¢ = const

r
ro— 4£m
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(r is used instead of the paramet@rThe equations (7) can now easily be solved;

it is convenient to express the result in terms of the physical components [43]
of AR, s We introduce the tetrads of orthonormal vectats, (o, 8, ... =

0, 1, 2, 3label the vectors) as follows:

Mg = (1/‘/1 —2m/r,0,0, o) :
My = (o, J1—2m/r,0, o) :
My =(0,0,0,1/r,0),

M3=1(0,0,0,1/rsing).
The physical components &R,,;,p are defined by

ARupap = ARuaph® uh 32800 p.

The result of the calculation is
ARupap(r) = ARuap(ro)(ro — 2m)/(r — 2m). 9)

It is worth noting thatA R ;44 behaves like- 1 for large values of; this re-
sult seems to confirm to some extent the general hypothesis about gravitational
radiation formulated in the first lecture.

2. Conservation laws and symmetry; properties of space-thnleorentz-
covariant field theory in flat space-time possesses 10 conservation laws which
correspond to the 10-parameters group of motions of Minkowski space-time.
In general relativity one can formulate some conservation laws involving the
pseudotensor of energy and momentum of the gravitational field. The physical
meaning of these laws is that the energy of matter and the electromagnetic field
can be transformed into the gravitational energy and vice-versa; the “physical”
energy of matter alone is not conserved. However, if the space-time admits a
group of motions, then it is possible to find some covariant conservation laws,
not involving the pseudotensor of the gravitational field:fis a generator of a
group of motions, i.e.

Vusa +oa =0 (10)
andT*f is the energy-momentum tensor of matter, then [22]
(T%vg).a = T g + T va;p = 0. (11)

The number of theseonservation laws of mattds equal to the number of
parameters of the group of motions [10]. There are 10 laws of the form (11)
only in spaces of constant curvature [22]. If the matter field is conform-invariant
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(which meand” = T,* = 0) then the equation (11) gives a conservation law also
in the more general case wheprepresents the generator of a group of conformal
transformations, i.e., whem, satisfies [44]

Vper + U = 20080 (12)

As an example, we can take aflat space-time and the Maxwell field [45]. Equations
(12) in Minkowski space-time have 15 independent solutions: 10 motions and 5
infinitesimal conformal transformations which are not motions (as generators one
can takev® = ex®, v* = Zelgxﬁx"‘ — e"‘xﬁxﬂ).

It is easy to write down the conservation laws in a form corresponding to
the canonical laws of special relativity [46]. Lét denote a physical field (not
gur) andL (¥, ¥ o, gu1) the corresponding Lagrangian density, supposed to be a
form-invariant function of its arguments. §fy is the “substantial” variation of
¥ corresponding to the infinitesimal transformatiofi = x* + v, i.e.8*y =
¥’ (x) — ¥ (x), then thevector density

I" = Lv" + 8"y oL/3y (13)

is divergence-free ib* satisfies (12) an&T = 0 [47]. All these conserva-
tion laws are “weak,” i.e. they hold when the free field equationsyfoare
satisfied.

It is well known also that the number of independent first integrals of the
equations of geodesics is equal to the number of parameters of the group of
motions [44]. Ifx* = x*(s) is a geodesic then

v¥dx*/ds = const

A generalization of this theorem to the case of particles interacting with physical
(electromagnetic, scalar) fields is given in [10]. For null geodesics the expression
v¥dx®/dx is a first integral also in the case whep generates a conformal
transformation.

3. The “fast” approximation methadAs has been said before, the EIH
method is not well suited to the investigation of gravitational radiation. It is
therefore necessary to have recourse to another method of approximation, in
which the time is treated on the same footing as the space coordinates. This
“fast” or “old” approximation method was used by Einstein as early as in 1916
[48]. Einstein assumed that the field is weak and can be written in the form
8ap = Nap + hap and that terms nonlinear ih,;, may be neglected in the
field equations. This approach constitutes essentially the first step of an approx-
imation method, which can be continued further. Namely, we can assume the
expansion

8ap = Nap +klflzaﬂ+k2ga,3+...,
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wherek is a parameter which may be identified with the gravitational constant or
with some characteristic mass in the problem [49]. If we write Einstein’s equations
in the form

G,* = —«T,*,  « =8k (14)

and assume the expansionsfpf andG,,*
ﬂf==guk+k{uk+-~, GM*=k§MA+%?gM*+.“ (gu*soy

then (14) becomes

Gt =871, G, =-81T . 15

1! o” 2 1 (19)
Einstein restricted himself to the first of equations (15). Fock [11], [22] and Bonnor
[49] found some partial and special solutions of the second order equations. We
shall now briefly discuss the theory of the first order approximatidn which is
known as

A) The linearized theory of gravitatiotn many textbooks on general rel-

ativity this theory is presented in connection with the problem of gravitational
waves and radiation. It seems important to realize to what extent this theory is

different from, and which of its results have their counterparts in, Einstein’s theory
of gravitation. In this section we shall drop the index belpw,, and writeH,,*
1

instead ofG ,* andU,* instead ofr ,*. The field equations of the linearized
1 0
theory become
H'=S,"-38"S=-81U," (16)
whereS = S, and

S;M = naﬁsuaﬂka

Sulaﬁ = % (huﬂ,)«x + h)»a,uﬂ - h/wz,)»ﬁ - h)»ﬂ,/wl) . (163)

The indices are raised and lowered by means of the Minkowski eta. The field
equations are invariant with respect to the gauge transformations

hll-l — h;;,k = hu)» —i—aﬂ’)h —I—a;hﬂ (17)

and can be derived from a variational principle. For the Lagrangian density of the
free field we can take

H = %(huk,ahak’” - hm'khaa’u + %hﬂu,xhamk - %hw\qahwx’a) (18)
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H is not invariant with respect to (17), but transforms according to theHaw
H' = H + QF 4 [50]. From this follow the “Bianchi” identities

H" , =0 (19)
and the existence of superpotentig]s”¥ = —V,#* such that
HP = v, v, = 3ol M T hg .. (20)

It is not possible to form a gauge-invariant functiomiqf, and# ;o alone. The
equationS,;;.s = 0 is a necessary and sufficient condition for the existence of
functionsa,, such that) ; = 0. The 20 functions,,qs have essentially the same
properties as the 20 components of the Riemann tensor:

Surap = Sapur = —Siuap Surap) =0, Surlap,r] = 0. (21)

The necessary conditions (21) are also locally sufficient for the existerigg; of
such that (16a) is true. This theorem seems to be connected with the problem of
finding the metric for a given curvature tensor. The equations (16) and (21) are
analogous to Maxwell’'s equations without potentiz;ﬂé.fA = —4nj*, flure =
0. Inthe linearized theory itis possible to solve the equations for the “figlgls,
without any reference to the “potentials), .

However, it is easier to normalize the potentials by means of the Einstein—

de-Donder condition

yH* =0, (22a)
where
Vir = hy. = 3000 hap, (22b)
and then write the field equations in the form
Oy* = 167 UM, (23)

U™ has to satisfy the conservation law
U, =0. (24)

Under some reasonable assumptions aliott, the retarded solution of (23)
satisfies equations (22a). The 4 continuity equations impose some conditions
on the source of the field; for example, pole particles interacting with:the

field have to move uniformly along straight lines. The “equations of motion” for
singularities can be obtained from the surface integrals

d
o ?§ Vv, %nids = 0.



Lectures on General Relativity 749

Figure 2.

However, the conditions (24) do not exclude the possibility of “wave solutions”,
depending on arbitrary functions of time. For example, if we take a quadrupole
source [51, 52]

wherea! = o'*(1), then (24) is satisfied for arbitraey’ (r). Einstein and Ed-
dington calculated the retarded field corresponding to (25) and, introducing it into
the energy-momentum pseudotensor, evaluated the total energy radiated by these
“gravitational waves.” However, it is necessary to be very cautious in interpreting
the results obtained by this method. Indefd,can be a periodic function and by
the Einstein-Eddington method we obtain in this case a permanent outflow of radi-
ation. Onthe other hand, itis obvious that a periodic metric excludes the possibility
of secular changes which accompany a permanent outgoing wave. Periodic grav-
itational fields can describe standing-wave processes only. Further, we can regard
Nua +khy, (whereh,,; is calculated from (22b), (23) and (25)) as an exact metric
of a space-time filled with matter described @y, = —« G ;. [114s + khagp].
In this case the total radiated energy and momentum will be defined by the time
integral of the flux onM" + Lﬂk through a large sphere and can be shown to be
equal to zero. In order to draw some physical conclusions it seems necessary to
pass to

B) higher approximationsif the ?m field really represents an outgoing

gravitational wave, one expects to find in the 2nd order a decrease of the total
energy (mass) of a radiating system. For example, we may take a Schwarzschild
field of massn, “superimpose” on it the field due to (25) wher® is a pulse, i.e. a
regular function vanishing outside the intervakr < T and compare the initial
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massn (region A) with the total final energy (region B~ 00). Itis not obvious

that the metric must be a Schwarzschild one in the region B, but it seems plausible
to assume that the metric in B is static, at least asymptotically feroco. If this

is the case, it is possible to determine the mass in region B by investigating the
1/r terms in the metric. Supplementigg* = g,m given by the formulae (25)

by a term representing a point massit is possible to write the first order field
in the form

_ _ klo,
)1/00_ dm/r 4(0{ (t r)/r)Jd,

voo=—4(@a-nsr) . vu=-de-n/r (26)
1 A 1

Y u is related tan 5 by a formula of the same form as (22b). In the second order
n

n

we can assume ,,; = 0. Imposing ory ,,; the conditiory#** ; = 0 we can write
1 2 2
the field equations in the symbolical form

Oy=v-v. @27)
2 1 1

The right-hand side of this equation is a function quadratif, &,,. Fock [11],
[22] found an approximate solution of (26):
Y= F(n,t —ryr~tlogrk,ky + ..., (28)

where the dots stand for terms which for largare small when compared with
logr/r, andF denotes a function with the following properties

0 for r <0,
Fn.n= {F(n) >0 for t > T.

F(n) is proportional to the energy radiated by the system (as calculated from the
pseudotensor) in a unit solid angle characterized.liyowever, it is not possible

to evaluate the mass of the field given by (26), (28) in region B. The integral
fQOOknde calculated up to the second order is divergent because of th¢dog
term.

Bonnor [49] has attacked a similar problem by a method slightly different
from the approach presented above. He assumes the axial symmetry of the radiat-
ing system (two particles connected by a spring) and introduces a non-harmonic
coordinate system in which the metric is diagonal. The ﬁgqjgj found by Bonnor

is time dependent in region B, but for largecontains only 1r (and smaller)
terms. The log/r terms appear also in his calculation but only with nonsecular
coefficients (vanishing in region B). The decrease of the gravitational mass defined
by the I/ terms is exactly equal to the total radiated energy, calculated from the
pseudotensor.
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C) Spherically symmetric scalar radiation field in general relativitihe
method of approximation with respectkaan also be applied when the gravita-
tional field interacts with some other physical fields. This can be illustrated by the
example of a “model” scalar fielg satisfying the covariant wave equation

(vV=8¢""9.2) , =0 (29)

Let us take the simplest case, namely that of a spherically symmetric field
and assume

ds? = etdt® — etdr? — r? (d@2 + sir? 9d¢>2) , and

¢=¢1), =1, A=A, 1). (30)

We shall find an approximate solution of (29) and of Einstein’s equations,
corresponding to an outgoing scalar wave. It will appear thajtidngtational mass
is diminished by an amount equal to the total energy carried out by-field.
The energy-momentum tensor for thefield was given in lecture I. Einstein’s
equations and the wave equation (29) become

e (M/r = 1/r?) + 1P = k(e + ), (31a)
e (u//r + 1/r2) 12 = k(e ¢ + e g2). (31b)
e MA)r = 2ke P, (31c)

(F2e 12y — (2e= /2 = 0, (31d)

where the dot and the prime denote, respectively, the derivatives with respect to
andr. The total energy contained in the field given by (30), whepe= o1,
is equal to

Py = f Uo%nidS = lim ri/(2k).
r—00

The radiated power is
Wo = Pp= lim ri/(2k) = lim r2¢¢’.
r—00 r—00
The last equality holds by virtue of (31c). Assuming the expansions

p=¢+ko+..., A=kr+k>r+...,
0 1 1 2

w=kn+k?u4 ...
1 2
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one gets the linearized equations

P = r3(¢7 4 9%), (32a)
1 1 0
i —a=r3¢% + ). (32b)
1 1 0 0
A=2ro¢, (32¢)
1 00
r2¢) — (r?¢') =0. (32d)
0 0

A possible solution of (32d) i#g = a(t — r)/r, wherea(z) is a regular “pulse”
function (vanishing for < 0 andr > T). The general solution of (32a) and (32c¢)
is

t—r
3 =2m/r = (2/r) f a%(t)dt' — a®(t —r)/r.
0

The system of coordinates defined by (30) is determined to within a transformation
of the time:t — ' = f(¢). Accordingly, the solution fop. will contain an
arbitrary function of time. We can choose it in such a way as to obtain a time-
independent metric in region A:

t—r
h= —2m/r + (2/r)/ a?(t)dt'
0

t—r
-2 / (2a2(t’)(t - Yy a@ha) e - r’)—z) dr'.
0
Finally, we have in region As(— r < 0):
A=2m/r, M ==2m/r,
1 1
andinregionB{—r > T):
A=2(m— Am)/r, lf = —2(m — Am)/r + function of time alone
1

where

T
Am = / a?@tydt'.
0
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The first order field in region B corresponds also to a Schwarzschild field, because
the function of time int can be absorbed by a transformatior>- ¢'. However,
1

it is not possible to find a single coordinate system, in which the metric has the
form (30) and is time-independent in both region A and B.

LECTURE V
EQUATIONS OF MOTION OF ROTATING BODIES ©

The first papers on the equations of motion dealt only with the problem of
spherically-symmetric, non-rotating bodies, described by “pole-particles” in the
method of singularities. If one wants to obtain the motion and the field due to
bodies with given internal structure, one must introduce higher poles, forbidden
by the original EIH prescriptions. The first and the simplest question which arises
concerns the motion of test particles with internal degrees of freedom (angular
momentum, quadrupole momentum etc.). This problem has been discussed by a
special approximate method by Mathisson [54] and lagk&a[55], and in general
relativity by Papapetrou [56]. The approach presented here has the advantage of
being relativistically invariant (the derivation of Papapetrou is not) and applicable
to particles with arbitrarily high multipole structure. The motion of heavy rotating
bodiesis discussed in Fock’s book [22] and in a paper by Haywood [57], who, how-
ever, neglected some terms of ordét in the equations of motioh Haywood'’s
equations differ only by non-essential terms from the EIH equations for pole-
particles. The post-Newtonian equations containing the corrections of igider
due to rotation have been found by Tulczyjew [53]. Starting from these equations
it is possible to derive a new relativistic effect consisting of the precession of the
plane of revolution.

1. Representation of extended bodies by means of singulatiBésis first
take a scalar (Newtonian) potentigl satisfying the Poisson equation

Ap = —4n f, (1)

where f denotes a regular function, vanishing outside a bounded region whose
dimensions are of ordér The solution of (1) can be written as

P(r) = / faHRav. )

6 This lecture is based mainly on the work of W. Tulczyjew [36, 53]. | take responsibility for this
presentation of the results.

7 As before,l is a length characterizing the dimensions of the bodiesatite distance between
them.
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ExpandingR—1 = |r — /|71 into a power series around the poimt= 0 it is
possible to writep in the form

() =wr = u A/r) i+ Q20 A/ — .. ©)

where the coefficienta, i/, ... are given by

,u:/de, uizfxide, uiszxixkfdv, R

witin /1 being of the ordel”. Neglecting the quadrupole field is equivalent to
treating/?/r? as small. Ifx # 0 all the higher moments depend on the choice
of the origin of coordinates which may always be localized in the centre of mass.
The dipole or static moment’ vanishes in this case. Jf = 0 thenu' does not
depend on the choice of the origin but this case does not occur in the theory of
gravitation. The series (3) represents the field only outside the body and in general
is divergent for small values of

In the §-functions formalism, the given by (3) is a solution of

A¢p = —4n </,L8 — s+ %,u"k&ik —-.. )
and we can writsymbolically
f=ud— s+ su* s —... (4)

(6 = &(r) denotes the three-dimensional Dirac function). Equation (4) means only
that theexteriorfield due tof is equal to a sum of harmonic fields associated with
us, —u's ;, etc. Equation (4) becomes meaningful when one integrates its both
sides withx’x* . .. x (equality of momenta).

Every exterior static Newtonian field can be thus described by a denumerable
set of coefficients (the “gravitational skeleton” of Mathisson).

It is not quite obvious that a gravitational skeleton exists for a given body
in general relativity. We shall assume that it does, or at least we shall confine the
discussion to bodies for which can be found an “equivalent” energy-momentum
tensor built froms-functions. This energy-momentum tensor will be assumed to
have the form

oo
Za’ﬂ = Z/ ds[ua58(4) — (Maﬂ)hla([l))’kl +...
—00
+(_1)k(k|)—1 (Ml){ﬁ}\l-..kk(g(@);klm)\k ]7 (5)
where the sum is extended over all bodiégy = 5w (x* — y*(s)) is the

4- dimensional Dirac’s function, and thés are some tensor fields defined along
the world lines and depending an
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2. Equations of motion for test particleBhe equations of motion of particles
with a given structure, for example pole-dipole particles, can be obtained from
1% 5 = OwithT°f given by (5). The following two lemmas proved by Tulczyjew
simplify the derivation of the equations of motions:

Lemma 1. For every fieldu®*(s) regular along the ling* = y*(s) we have the
identity

o o0
/ ds (a“"'ky’ﬂ8(4));u = / dsdwyDa**/ds, v = dy*/ds.
o

oo _
Lemma 2. Every expression

oo
NP :/ ds[v*-Poa + (v M8w) o (IS w) ]

—00
(6)
can be transformed into the “normal” form

(0.¢]
NP =/ ds[n"Po + (n*P8@) 5, + o (1P @)

—00

where then’s are symmetric in thg’s and orthogonal to’:
By — o Bl(rdp) and

na...ﬂ\)\l.,.kpyi -0

1

The vanishing of all the’s is a necessary and sufficient condition for the vanishing
of N8,

The proof of the firstlemma is easy. The proof of the second lemma is based on the
first lemma and on the formula expressing the skew part of the second covariant
derivatives of a tensor. In order to prove théft-# = 0 implies the vanishing of
then’s we integrate the scalar densil&%,__ﬂﬂ““ﬂ = 0 (K...p = arbitrary) over

a 4-region and apply some kind of generalized Du Bois Raymond’s lemma. The
general procedure of obtaining the equations of motion is very simple; we take a
TP with a definite number of multipole terms (i.e., wefiin the formula (5)) and

write downz"‘ﬂ;ﬂ. This expression is of the type given by (6); one transforms it
into the normal form and then requires the separate vanishing of all the coefficients
n. As an example one can take a pole-dipole particle described by

o0
T = / ds[u“ﬁ5(4) - (Mam‘s(@);x]‘ (7)
—00

Without loss of generality it is possible to assume tidhthe u's are orthogonal
to the velocity in ther-indices. In this case it means that
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Maﬂky;‘ =0.
w®* can be written in the form
Maﬁk — gobh + %Saky/ﬁ + %Sﬂ)“y/a n Sky/ozy/ﬁ
where theS are orthogonal to’* ands®#* = $fe*_Similarly
Maﬂ — m*B +may/ﬂ +mﬂy/a +my/ay/ﬂ
where
m®f = mP, m“ﬂyl’g =0, m®y,, = 0.
S% corresponds to the static (dipole) moment of the body and can be put equal to
zero by an appropriate choice of the world linéNVe shall assume in further work
thats* = 0. By writing 7,5 = [ ds[ (u*’6@))., — (1***6@).,,] = 0 and
applying the procedure outlined above one obtains the following set of equations

S 4 5% 4 L(5Pr 4§y = 0 ®)

or SP—_gM and S*%* =0,

2m® = y, DSP* /ds, (9a)

m® =0, (9Db)

DS /ds — y’ﬁyiDSo‘)‘/ds + "%y, DSP* 1ds = 0, (9c)
D DS*

ds (my’“ T yi) + 35y PR g5 = 0. (10)

These equations are essentially those obtained by Papapetrou [56]. The condition
s*fy’ = 0imposed o5 by Pirani [43] is here satisfied ex definitione. It follows
from equations (8)—(9b) that a pole-dipole particle is completely characterized by
4 parameters: the mass(which is conserved by virtue of (9c), see [43]) and a
space-like angular momentum vector [43]

H* = %nukaﬁyisaﬂ’ H#y,i/L =0,

wheren**8 is the alternating tensor. Equation (9¢) governs the changes of angular
momentum and can be rewritten in the form
DS jds = (Sﬂ)”y/a — Sa)‘y’ﬂ)yﬁf.

Equation (10) describes the translatory motion of the particle and reduces to
the geodesic equation & = 0. From (9a) and (9b) one obtains the result
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enunciated without proofin one of the preceding lectures: for a simple pole particle
’uaﬂ _ my/oty/ﬁ_

The equations (8)—(10) can also be applied to heavy rotating bodies if one
uses the “good-deltas” technique.

3. Post-Newtonian equations of motion of two heavy, rotating bodetsus

consider the case of two bodies of finite mélssgz with world lines described
by y¢ = yk(r) andz¥ = zK(r). These bodies are supposed to possess some
internal angular momentum and to have a pole-dipole structure (quadrupole effects
being neglected). The equations of motion of these bodies can be obtained by an
approximate method directly from (9¢) and (10). The approximate equations can
also be derived from the beginning without reference to (8)—(10).

The energy-momentum tensor density of the system can be written in the
form

1 1 2 2
T =195 — 1 oPks 4 19Ps — 1 9Pks (11)

1 2
S = 5(3) (XS _ ys) , S = 5(3) (xs _ ZS) ,

which is equivalent to (7). Evaluating‘”/f’;/3 = 0 we obtain the equations of
motion, which for the first body read

N R A )

—_—~ —_—~

+2z1°”{g }J+#fr{"‘ | =0 (12)

Loor | Yaogr _ Lar 1oor{'07} 1osr{7} 1m[ a ]
- 2 -0, (13
t Y =ttt 00 + 2t Os +1 o (13)

1 o1 . 1., 1, .
totOr)-)s _’_[aOAyr_tozsr_tars =0, yr:dyr/d[. (14)

1
The equations for the second body are similar. Assuming the vanishing’of

2

andz %9 (cf. the preceding section), one obtains from (14)dcs O:
;vrs dzef2t10rx - _ g'vxr

and fora = t:

1. 1. 1
tstr:%(SAryl_i_SlryA).

The field equations can be solved by the EIH method. Denafifig= m the
equation forg 0o can be written as
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3).

The solution of this equation was given in lecture Il. As before, one can take
8 ik = Six & oo- The equations fog o andg oo contain new terms, due to rotation
2 2 3 4

1
AZE’OOZBJT( §+

ISR
NN

of the bodies (the angular momentuwifi is of the third order and does not enter
the second order equations). The “rotating contributionsg gp and g oo have
3 4

respectively the form@x gradr—t and & (S X gradr‘l) whereSis the vector
associated with the skew tens$i¥ andv is the velocity of the body.

Itis now possible to expand (12)—(14) into power series and obtain equations
for m, S andy. Equation (12) fox = 0 gives in the third order the conservation
of m and in the fifth order determin%s. Equation (13) forx =0 determineg or

and: %, and fora = s gives
5

lsr

1
t =mySy" and
4 zyy

wnrk
o3
o
I
o

(15)

Equation (12) fora = k gives in the fourth order the Newtonian equations of
motion. To the sixth order this equation givége post-Newtonian equation of
translatory motior{53]:

12 2 1
my* —mm@rt)  =mm [()'f‘)'fY + 322 -4y —4mr ' —5m r‘1> ™,

—+

+
— o~

4)-]3 (Z]‘ _ yk) + 3)7ka _ 4Zkzs) (V_l) + %Zmz-nr‘kmn}

,S

1 2
,,’21 Sr.r (223 _ yA) —I—I’:ILl er (ZA _ 2y:):| (}’71) .

Jkr

2("21 g}kr _’_},}1 §kr) (zr _ yc) (r—l)

+

(16)

st

1 2 .

m andm denote here theecondorder masses; the subscript 3 unddnas also

been omitted; = |y — z| is the distance between the bodies and= dr/dy*.

The interpretation of§™ as the internal angular momentum is justified by the
3

formula

rs _ s oS\ 0r _ (.r _ _r\40s dv.
5 = [[6¢ =) 1% = (7 =) %]

This Newtonian angular momentum is conserved by virtue of (15) and it intro-
duces some relativistic corrections to the motion in the 6th order. Terms of order
12/L? (quadratic in theS) have been neglected in (16) as small compared with
I/L.
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In order to integrate the equations (16) it is convenient to put them in the
Lagrange form. A Lagrangian function for non-rotating bodies has been found
by Fichtenholz [24] and by Infeld [37] and the terms corresponding to correc-
tions due to rotation were obtained by Tulczyjew [53]. The symmetry properties
of the Lagrangian allow us to write some first integrals of the equations of
motion.

We now quote some results under the simplifying assumptions that the mass

of the second body is much larger than that of the fib$t=£ 1121 > nl1 =m) and
that only the second body has an internal angular momeBfuimtroducing the
vector

J=m (1 + 124 3M/r) (f X V) +2mr x (r x Sr3, 17)

wherev =t andr is the radius-vector pointing from the second body to the first,
one can derive the following equation

dl 2

— = —=SxJ. 18

dt r3 (18)
In the Newtonian approximatiohis simply the (orbital) angular momentum of
the first particle and it is conserved by virtue of (18). The absolute valdeiof
conserved even in the next approximation, however the vddtself precesses
around the constant vect& For an orbit which is circular in the Newtonian
approximation { = R = const.) the angular velocity of precession is equal
to

2SR—3 = const

If the Newtonian motion takes place in a plane perpendicul8y tkenJ = const

and the post-Newtonian motion is plane too. In this case the trajectory of the
particle is a “rotating ellipse” and the advance of periastron per one revolution is
given by

6r M 4mS
AYy=—[1—-=-— 19
=0 (135 ) (19

wherep is the semi-latus-rectum of the ellipse. Fbe= 0 this formula reduces
to the usual expression for the advance of the perihelion.

8 Tulczyjew’s original work deals with the general case of two rotating, heavy bodies.
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For an artificial satellite moving near the Earth, the advance of the perigee
due to rotation of the Earth is equal to 53" per century [58]. The angular velocity
of precession for such a satellite is equal to 26" per century.
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