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LECTURE I

BOUNDARY CONDITIONS IN GRAVITATIONAL RADIATION
THEORY

1. In dealing with physical problems, we are often interested in the solution of
field equations with given sources, but with nothing known about initial condi-
tions. Therefore, we cannot solve the Cauchy problem, for although it is a very
natural problem for hyperbolic normal equations, its solution requires a detailed
knowledge of the field on an initial space-like hypersurface. However, in general,
a whole set of fields corresponds to a given distribution of sources, and in order to
find a unique solution of the physical problem we must specify some additional
conditions. For linear field equations these conditions may consist in prescribing
the form of the Green’s function (e.g., retarded, advanced, etc.). If we investigate
the field in the whole (unbounded) space-time we can ensure uniqueness by
specifying some appropriateboundary conditionsat spatial infinity. This latter
approach has the advantage of being applicable to nonlinear equations such as
Einstein’s gravitational equations. These boundary conditions, first formulated for
a periodic scalar field by Sommerfeld [1], have a definite physical meaning. For
example, the “Ausstrahlungsbedingung” of Sommerfeld means that the system
can lose energy in the form of radiation, but that no radiation is falling on the

1 These lectures were delivered at King’s College in London in May–June 1958. They are published
here for the first time, with the kind permission of the author. The publication was approved by two
referees, as is the rule for newly published papers. A few minor linguistic corrections have been
introduced, with the approval of the author.
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system from the exterior. We propose now to reformulate Sommerfeld’s radiation
condition so as to exhibit its physical meaning [2] and to generalize this condition
to the case of Einstein’s theory of gravitation [3].

2. Let us first take thescalar wave equation

1φ − φ,00 = −4πf (1)

and assumef (r , t) to be a regular function vanishing outside a bounded 3-
dimensional regionV . The retarded solution of (1) can be written in the form

φ(r , t) =
∫
V

f (r ′, t − R)

R
dV ′, R = |r − r ′|. (2)

From the formula (2) we obtain the following asymptotic values ofφ and its
derivatives2

φ = r−1
∫
V

f (r ′, t − R)dV ′ +O(r−2),

φ,α = kαr
−1
∫
V

f,0(r ′, t − R)dV ′ +O(r−2), (3)

where

kα = (1, ns), ns = xs/r (4)

is a null vector field.
Now, we can formulate the following boundary conditions to be imposed on

solutions of (1):

φ = O(r−1), (5)

there exists a functionψ = O(r−1) such that

φ,α = ψkα +O(r−2), (6)

wherekα is given by (4).
We see from equations (3) that every retarded solution of (1) fulfills (5) and

(6). Conversely, if the condition (6) is fulfilled, thenφ satisfies Sommerfeld’s
radiation condition

lim
r→∞ rk

αφ,α = lim
r→∞ r (∂φ/∂t + ∂φ/∂r) = 0.

2 FA = O(r−k)means that there exists a constantM such that, for sufficiently larger, we have|FA| <
Mr−k ; Greek indices run from 0 to 3, Latin, from 1 to 3;x0 = t, (x1, x2, x3) = r ; a comma followed
by an index denotes partial differentiation. The summation convention will be used throughout.
Indices will be raised by means of the Galilean metric tensorηαβ (η00 = 1, ηik = −δik, ηi0 = 0).
Square brackets stand for alternation, e.g.,F[µλα] = Fµλα +Fλαµ +Fαµλ −Fαλµ −Fλµα −Fµαλ.
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Thus the wave equation with a spatially bounded source has always one and only
one solution fulfilling our conditions (5) and (6). This is the retarded solution.

If we replace (4) bykα = (1,−ns), we obtain the conditions which charac-
terize advanced solutions of (1).

Let us introduce the energy-momentum tensor of the fieldφ:

Tµ
λ = Lδµ

λ − φ,µ∂L/∂φ,λ, where L = −ηαβφ,αφ,β/8π.
From the asymptotic expression forφ,α we haveL = O(r−3) and

4πTµλ = ψ2kµkλ +O(r−3). (7)

Thus the asymptotic form ofTµλ resembles the energy-momentum tensor of
a perfect fluid with vanishing rest mass. We can obtain from (7) the time rate of
radiation of energy and momentum:

4πWµ = 4π
∮
S

Tµ
snsdS =

∮
S

ψ2kµdS.

The integrals are to be taken over the surface of a sphere “at infinity.” The condition
(6) ensures thatW0 > 0.

3. The situation is somewhat more complicated inelectrodynamicsbecause
of the gauge-invariance. Maxwell’s equations

f µλ,λ = −4πjµ, fµλ = Aλ,µ − Aµ,λ (8)

can be reduced to four wave equations

1Aµ − Aµ,00 = −4πjµ (9)

if one imposes on the potentialsAµ the Lorentz condition

Aα,α = 0. (10)

We can impose conditions like (5) and (6) onAα satisfying (9) and (10).
It would perhaps be more satisfactory if we formulated the boundary conditions
in a way involving only thefield fµλ and not the potentialsAα. However, the
chosen conditions will be more suitable for a straightforward generalization to the
gravitational case. The currentjµ will satisfy the same regularity and boundedness
conditions as didf in the scalar field case.

We formulate the boundary conditions as follows:there exists a potentialAµ

satisfying

Aµ = O(r−1) (11)

and four functions

Bµ = O(r−1) (12)
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such thatAα,β = Bαkβ +O(r−2), and

Bαk
α = O(r−2). (13)

It should be noted that there are many sets of functionsAα which satisfy
Maxwell’s equations (8) and the conditions (11)–(13), but they differ only by
gauge transformations and all represent the same electromagnetic field.

From equations (12) and (13) we obtain the asymptotic form of the field3:

fµλ ∼= kµBλ − kλBµ, kαB
α ∼= 0, (14)

or, in vector notation:

E ∼= (B × n)× n, H ∼= B × n, Bα = (B0,B), kα = (1,n).

Equations (14) represent a system of “gauge-invariant” boundary conditions.
The electromagnetic field has asymptotically the form of a plane wave. For the
energy-momentum tensor

4πTµλ = 1
4ηµλfαβf

αβ − fµαfλ
α

we obtain the expression

4πTµλ = −BαBαkµkλ +O(r−3).

Sincekν is a null vector, it follows from (13) thatBαBα 6 0 for sufficiently
larger.

The total chargee contained in the field can be calculated by means of the
Gauss law

4πe =
∮
f k0nkdS.

Thoughf k0 contains terms going as 1/r, neverthelesse is finite by virtue of (14).
4. In physics we are ordinarily interested in conservation laws which have an

integral character. A classical conserved quantity is a functionalf [σ ] depending
on a space-like hypersurfaceσ . A conservation law is the statement that, by virtue
of the equations of motion,f does not in fact depend onσ . As is known, in general
relativity the energy-momentum tensor of matterTµλ does not by itself lead to
an integral conservation law. However, if we introduce an energy-momentum
pseudotensor of the gravitational fieldtµ

λ = (δµ
λG + gαβ,µ∂G/∂g

αβ
,λ)/2κ,

then the sumT µ
λ+ tµλ is divergence-free by virtue of Einstein’s equations (17)4.

3 We shall sometimes writeF ∼= G to meanF = G+O(r−2).
4 gµλ will denote the metric tensor of the Riemannian space-timeV4. Underlined let-

ters denote tensor densities with respect to affine coordinate transformations;G =√−ggµλ (0αµβ0βλα − 0αµλ0
β
αβ

)
.
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The Einstein tensor densityGµ
λ = √−g(Rµλ − 1

2δµ
λR) can be written in the

form

Gµ
λ = κ

(
tµ
λ + Uµ

αλ

,α

)
, (15)

where the “superpotentials”Uµ
αλ are given by [4]

2κUµ
νλ = √−ggβ[αδµ

νgλ]τ gαβ,τ = −2κUµ
λν. (16)

If Einstein’s equations

Gµλ = −κTµλ (17)

are satisfied, then equations (15) and (16) imply

T µ
λ + tµ

λ = Uµ
λα

,α
, thus (T µ

λ + tµ
λ),λ = 0. (18)

The functionstµ
λ are not components of a tensor density (essentially because

of the equivalence principle) and many physicists (e.g., Schrödinger [5], Bauer [6])
have raised doubts as to their physical meaning. Einstein [7] and F. Klein [8]
formulated some conditions which enable us to consider the integrals

Pµ[σ ] =
∫
σ

(
T µ

α + tµ
α
)
dSα =

∮
S

Uµ
αβdSαβ (19)

as representing the total energy and momentum of the system matter plus grav-
itational field. These conditions can be summarized as follows: Let us take an
isolated system of masses (Tµ

λ = 0 outside a bounded 3-region) andassumethe
existence of coordinates such that [9]

gµλ = ηµλ +O(r−1), gµλ,α = O(r−2), (20)

wherer denotes the distance measured along geodesics from a fixed point on a
space-likeσ . Equations (20) have a double meaning: they constitute a system of
boundary conditions and they distinguish a set of co-ordinate systems (“Galilean
at infinity”).

Using (18) it can be easily proved that:
1) Pµ[σ ] calculated from (19) in a co-ordinate system satisfying (20) is

always finite and does not depend onσ ;
2)Pµ is unaltered by a co-ordinate change which preserves (20) and reduces

to the identity forr → ∞;
3)Pµ is a vector with respect to linear orthogonal transformations. The proof

is based on the vanishing of the integrals

pµ =
∫
6

(T µ
λ + tµ

λ)dSλ (21)

taken over atime-like“cylindrical” hypersurface6 at spatial infinity (note thatS
appearing in (19) is the intersection of6 andσ ). The vanishing of these integrals
is ensured by (20) (tµ

λ is quadratic ingµλ,α) and our assumption onTµλ (Fig. 1).
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Figure 1.

The proof of part 2) of the Einstein-Klein theorem is as follows. Let us take
two space-like hypersurfacesσ andσ ′ and choose onσ two coordinate systems
xI
α andxII α which coincide at infinity and satisfy the conditions (20). Now,

introduce two coordinate systems in the whole space-time which are identical on
σ ′ and coincide respectively withxI α and withxII α onσ . Betweenσ andσ ′ these
coordinates are supposed to satisfy (20). Applying the Gauss theorem twice to (18)
in the region lying betweenσ andσ ′, and taking into accountpIµ = 0 = pIIµ we
obtainP Iµ [σ ] = Pµ[σ ′] andP IIµ [σ ] = Pµ[σ ′], and thusP Iµ [σ ] = P IIµ [σ ]. The
integrals (21) can eventually be identified with the total energy and momentum
radiated through6, and Lichnerowicz’s boundary conditions (20) automatically
exclude the existence of any radiation.

5. Comparison with electrodynamics suggests that radiation fields in general
relativity should be characterized bygµλ,α ∼ 1/r, rather than bygµλ,α ∼ 1/r2.
However, if the integrals (21) do not vanish, the proof of the Einstein-Klein theo-
rem is no longer valid and fresh doubts as to the meaning of (19) arise. We propose
to generalize the boundary conditions (20) in such a way as to include radiation
fields. We expect that these conditions will ensure the finiteness ofPµ and that
Pµ will not change with coordinate transformations which reduce to an identity
for r → ∞ and preserve theformof the boundary conditions. The dependence of
Pµ onσ will now correspond to the loss of total energy by radiation.

Fock [6] proposes to normalize the coordinate systems by means of de
Donder’s relation

gµλ
,λ

= 0 (22)

and imposes ongµλ the radiation condition of Sommerfeld. We find this for-
mulation somewhat stringent. In particular, we see no reasons for restricting
ourselves to harmonic coordinates only. There is no convincing argument for
writing the Schwarzschild line element in harmonic coordinates instead of, say,
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in the isotropic ones. The possibility of introducing privileged coordinates in
Riemannian space-time is known to be closely related to its symmetry properties
[10]. Galilean coordinates and Lorentz transformations reflect the homogeneity
and the isotropic properties of flat space-time [11]. The flat metric tensor is
invariant in formwith respect to Lorentz transformations, which constitute a 10-
parameter group of motions of space-time. Fock’s “Lorentz transformations” ( =
linear orthogonal transformations in curvilinear, harmonic coordinates) have not
this property. However, if a space-time is flat at infinity, it seems reasonable to
distinguish a set of coordinates which exhibit this “asymptotical symmetry” and
this is the meaning of conditions (20).

We generalize the conditions of Fock along the lines presented in the pre-
ceding sections. First, introduce a null vector fieldkα defined as follows. Letnα

be a unit space-like vector lying inσ , perpendicular to the “sphere”r = const.,
and pointing outwards. We putkα = nα + tα, wheretα denotes a unit time-like
vector normal toσ , such thatt0 > 0.

Now, we formulate the following boundary conditions to be imposed on
gravitational fields due to isolated systems of matter:there exist coordinate systems
and functionsiµλ = O(r−1) such that

gµλ = ηµλ +O(r−1), gµλ,α = iµλkα +O(r−2), (23)

(iµλ − 1
2ηµλη

αβiαβ)k
λ = O(r−2). (24)

These conditions correspond to the “Ausstrahlungsbedingung” of Sommerfeld;
we obtain the “Einstrahlungsbedingung” if we assumenα to be inward-pointing
instead of outward-pointing. Relations (23) and (24) together areweakerthan (20);
this means that every field fulfilling (20) satisfies also conditions (23) and (24)
and that the class of coordinate systems distinguished by (23) and (24) is larger
than that defined by (20). Equation (24) restricts the coordinate systems to those
which are asymptotically harmonic; however, it may be noted that, for example,
the isotropic coordinates used in Schwarzschild space-time are asymptotically
harmonic in this sense.

Strictly speaking, the justification of conditions (23) and (24) should await
the proof that Einstein’s equations with bounded sources have always exactly one
solution satisfying them.

6. We shall now present some consequences of (23) and (24). First of all, we
shall examine the convergence of the energy integrals (19). The superpotentials are
linear ingµλ,α and thus go as 1/r; we must therefore show that the terms behaving
as 1/r cancel out in the surface integral (19). Indeed, the surface elementdSλµ is
proportional ton[λtµ] = n[λkµ] , and the terms in question in (19) can be written as
ηβ[αδµ

νηλ]τ iαβkτ k[νnλ] . Taking into account (24) we verify that this expression
does vanish.
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Let us take a coordinate transformation

xα → x′α = xα + aα(x) (25)

fulfilling the conditions

aα = O(r), aα,β = bαkβ +O(r−2), (26)

whereaα = ηαβa
β , bα = O(r−1), and

aα,µλ = bα,µkλ +O(r−2), bα,λ = O(r−1). (27)

From equation (27) follows the existence of functionscµ = O(r−1) such that

bλ,µ = cλkµ +O(r−2). (28)

Coordinate transformations (25) satisfying (26) and (27) preserve theformof
the boundary conditions; this can easily be seen from the transformation formulae
for gµλ andiµλ:

g′
µλ(x

′) ∼= gµλ(x)+ bµkλ + bλkµ,

i′µλ(x
′) ∼= iµλ(x)+ cµkλ + cλkµ. (29)

Computing the superpotentials in both coordinate systems and taking into
account the relations (23)–(29) we obtain

U ′
µ
αλ
k′

[αn
′
λ] = Uµ

αλk[αnλ] +O(r−3).

Therefore the total energy and momentumPµ is well defined by equation (19) and
the boundary conditions (23), (24). It must be noted that our prescription demands
that thecalculationofPµ should be performed by means of (19) using coordinates
which satisfy equations (23) and (24). This does not by any means imply that the
energy is only a property of the coordinate system. The vectorPµ[σ ] constitutes
a global characteristic of thefield and it is only for computational purposes that
we must appeal to (23), (24).

7. The total energy and momentumpµ radiated between two hypersurfaces
σ andσ ′ is given by (21), or by

pµ = Pµ[σ ] − Pµ[σ ′] =
∫
6

tµ
λdSλ

(Tµλ vanishes on6). The boundary conditions enable the estimation ofpµ; we
have in fact

tµ
λ = αkµk

λ +O(r−3) (30)

where



Lectures on General Relativity 729

4κα = iµλ(iµλ − 1
2ηµλη

αβiαβ). (31)

α is “∼= invariant” with respect to the transformation (29) and isnon-negativeby
virtue of (24); thereforep0 > 0. The existence of radiation is characterized by
pµ 6= 0.

We could also take a more general case, including the electromagnetic field.
The boundary conditions forgµλ should be supplemented by those forfαβ given
by (14). We obtain in this caseT µ

λ+ tµλ = ᾱkµk
λ+O(r−3), 0 6 ᾱ = O(r−2).

8. Pirani [12] and Lichnerowicz [13] proposed recently definitions ofpurera-
diation fields. It may be interesting to compare their definitions with our approach.
Let us admit the additional but reasonable assumption that the second derivatives
of gµλ also go to 0 as 1/r and thatgµλ,αβ ∼= iµλ,βkα. From iµλ,αkβ ∼= iµλ,βkα
follows the existence of functionsjµλ = O(r−1) such that

gµλ,αβ ∼= jµλkαkβ, (jµλ − 1
2ηµλη

αβjαβ)k
λ ∼= 0. (32)

For the curvature tensor we get

Rµλαβ ∼= 1
2k[µjλ][αkβ] (33)

The principal part ofRµλαβ has therefore the same form as a discontinuity of
the Riemann tensor [14] and is thus of type II, with vanishing scalar invariants,
in the Petrov-Pirani classification [12]. It is interesting to note that the plane
gravitational waves discovered by Bondi and Robinson [15], [38] are also of type
II “pure radiation.” It seems that in the theory of gravitation we have essentially the
same situation as in electrodynamics: a gravitational wave produced by a system
of bodies behaves at large distances locally as a plane wave. L. Marder pointed out
that the Riemann tensor of outgoing cylindrical waves [16]–[18] goes for larger

like r−1/2 (r denotes here the “radial” coordinate) and is asymptotically of type
II. This result seems to confirm the general theory; the behaviour liker−1/2 is to
be expected for fields with cylindrical symmetry.

The terms proportional to 1/r inRµλ cancel out by virtue of (24). Conversely,
Rµλ ∼= 0 and equation (18) implyRµλαβ ∼= 0 unlesskµkµ = 0. If we take into
account the electromagnetic field, Einstein’s equations can be written in the form

Rµλ = βkµkλ +O(r−3), β = O(r−2). (34)

Moreover, it follows from (33) that

k[µRλα]βγ ∼= 0, kµRµλαβ ∼= 0. (35)

If one replaces the asymptotic equalities∼= by strict ones, then equations (34) and
(35) become Lichnerowicz’s conditions [13] characterizing a pure radiation field.

Our boundary conditions contain not only the characterization of the field but
also some conditions on the coordinates. It would be very interesting to formulate
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purely geometrical boundary conditions (e.g. in terms of scalar invariants of the
curvature tensor). But the principal unsolved problem is rather whether there are
any non-stationary gravitational fields produced by bounded systems of matter
and flat at spatial infinity. The theory presented here has of course been developed
on the assumption that such fields exist.

LECTURES II & III

EQUATIONS OF MOTION AND GRAVITATIONAL RADIATION

The practical applications of electromagnetic radiation theory are connected
with the possibility of producing waves with arbitrary time-dependence. Maxwell’s
equations impose no conditions on the motion of charges; by means of nonelec-
trical forces we can move them in a quite arbitrary way. The situation is different
in General Relativity: here the field equations restrict the motions of masses, and
the question arises whether or not these restrictions may prevent gravitational
radiation from taking place.

The connection between Einstein’s field equations and the equations of mo-
tion has been known for a long time and is quite elementary; for example, if we
write the field equations for a perfect fluid without pressures

Gµλ = −κT µλ = −κρuµuλ, (1)

then, from the Bianchi identities we haveGµλ;λ ≡ 0 which impliesT µλ;λ = 0,
or (

ρuλ
)
;λ = 0 (2a), and ρDuα/ds = 0. (2b)

Equation (2a) expresses the law of conservation of mass and (2b) states that the tra-
jectories ofuν are geodesics (D denotes the absolute derivative). This idea can be
generalized; let us take a classical field (notgµλ) interacting with “pole-particles”
and assume that the field equations are derivable from a Lorentz-invariant varia-
tional principle. Entirely from considerations of invariance (Noether’s theorem),
we obtain the following identity [10]

T µλ;λ +Mµ(eqs. of motion)+Nµ(field eqs.) ≡ 0,

whereT µλ is the total energy-momentum tensor.Mµ andNµ vanish if the
equations of motion and the field equations are satisfied andMµ = 0 implies
the equations of motion. In special relativity, we infer the conservation laws from
Mµ = 0 = Nµ. In the theory of gravitation, whereT µλ acts as a source of the
g-field, T µλ;λ = 0 musthold (because of the Bianchi identities) and ifNµ = 0
then alsoMµ = 0. It is not necessary to postulate separately a dynamical principle
for the motion of particles in general relativity.
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As is known, Einstein regarded the energy tensor as a temporary means
for the description of matter and sought for a description of nature in terms of
purely “geometrical” fields. One of the provisional solutions was to treat particles
as singularities in empty space-time. The main purpose of the famous paper by
Einstein, Infeld and Hoffmann [19] was to show that the motion ofsingularitiesis
also determined by the field equations and to work out an approximation method
suited to the calculations of relativistic corrections to the Newtonian motion of ce-
lestial bodies. The equations of motion were obtained from the vanishing of some
surface integrals surrounding the singularities which expressed the integrability
conditions for the approximate field equations. The original method of EIH was
improved in a later paper by Einstein and Infeld [20], by the introduction of some
pole and dipole terms in such a way that the integrability conditions were satisfied
automatically. The equations of motion were then obtained by setting equal to
zero the sums of these pole and dipole moments.

The problem of motion was attacked also by Fock [21], [22], [11] and his
students [23], [24]. They used the same approximation method as Einstein and
Infeld did, but the bodies were represented not by singularities but by a continuous
energy-momentum tensor with pressures. Fock fixed the space-time coordinate
system by the de Donder condition and obtained the equations of motions of the
centre of inertia of a body by integrating the equationsgT µλ;λ = 0 over the 3-
region occupied by it. He obtained also some equations for the internal motion of
rotating bodies (from the equations

∫
x[iT k]α;αgdV = 0).

Infeld [25] introduced an energy-momentum tensor involving Diracδ-func-
tions for the description of pole particles. This produced a great simplification in
the derivation of the post-Newtonian equations of motion (obtained fromT µλ;λ
= 0).

Einstein, Infeld and Hoffmann had assumed certain forms of series expansion
of the metric tensor which by analogy with electrodynamics they interpreted
as corresponding to the choice of the symmetric (half-advanced, half-retarded)
Green’s function. Infeld [26] wrote down the first terms ingµλ corresponding
to the choice of a retarded Green’s function and showed that they did not give
any contribution to the equations of motion up to the 7th order (the Newtonian
equations are of the 4th order and the post-Newtonian ones – found by EIH –
of the 6th order). N. Hu [27]worked out the radiation terms in the next step
and found “anti-damping” – the energy of a system of two bodies appeared to
increasewhen the radiation was taken into account. The first radiation terms are
functions of the time alone and several papers dealt with the problem whether
they represent a “true” gravitational field or could be “annihilated” by a co-
ordinate transformation [28]–[3l]. An answer to this question will be proposed
below.

The extent to which the equations of motion do depend on the choice of
coordinates is a problem which has drawn some attention in recent years [32]–
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[34]. We shall briefly discuss this and some other aspects of the EIH method,
mainly those related to the problem of gravitational radiation.

1. The “new approximation method.” Let us again start with the scalar wave
equation

oφ = 1φ − φ,00 = 0, (3)

and introduce the timet instead of the “cotime”x0=ct . If a solutionφ(x0, xk, c)=
φ(ct, xk, c) of (3) can be expanded into a power series in 1/c

φ =
∞∑
n=0

c−n φ
n
(t, xk), (4)

then the functionsφ
n

satisfy

1φ
0

= 0, 1φ
1

= 0, 1φ
2

= φ̈
0
, . . . , 1φ

k

= φ̈
k−2
, . . . (5)

(the dots over theφ’s stand for derivatives with respect tot). The structure of
(5) is such that wecan, if we wish, find solutions (4) containing only even or
only odd terms. If we putφ

0
= 0, φ

2n−1
= 0 (n = 1,2, . . .), start with the pole

solution in the second order;φ
2

= a(t)/r, and take the simple solutionsφ
4

= 1
2 är,

φ
6

= (4!)−1r3d4a/dt4, . . ., then we obtain the standing wave solution of (3):

2φ = a(t − r/c)+ a(t + r/c).

A retarded solution can be obtained if we introduce a “first radiation term” in the
3rd order:

φ
0

= 0, φ
1

= 0, φ
2

= a/r, φ
3

= −ȧ, φ
4

= 1
2 är,

φ
5

= (3!)−1 ...ar2, . . . ;φ = a(t − r/c)/r.

It is important to note thatφ
n

= O(rn−3) for r → ∞ and this is also a general prop-

erty of solutions of the inhomogeneous wave equation with a spatially bounded
source. Ifλ is the characteristic wavelength of the field, then we can safely stop
after the few first terms of the series (4) only in the region where

r � λ. (6)

In other words the new approximation method of EIH is not well suited for the
description of a field in the wave zone. If we write Maxwell’s equations in the
form
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oAα = −4πjα, Aα,α = 0, jα,α = 0 (7)

and assume thatj0 is of order 2 andjk of order 3, then theretardedsolution of
(7) can be expanded into a power series as follows (in future we shall putc = 1):

A0(r , t) =
∫

0
j
2
(r ′, t)/RdV ′ −

∫
0
j
2
,0 dV

′ + (2!)−1
∫

0
j
2
,00 RdV

′ + . . .

Ak(r , t) =
∫

k

j
3
(r ′, t)/RdV ′ −

∫
k

j
3
,0dV

′ + (2!)−1
∫

k

j
3
,00RdV

′ + . . . .

The conservation of charge impliesA
3

0 = 0 and the first radiation term appears only

in the 4th order (A
4

k). For large values ofr and forn > 3 we haveA
n

α = O(rn−4).

In the linearized theory of gravitation the situation is similar but the radiation
terms are shifted still further along the series. If we writegµλ = √−ggµλ =
ηµλ − γ µλ and assume de Donder’s conditionsγ µλ,λ = 0, then the linearized
Einstein’s equations become

oγ µλ = +16πT µλ, T µλ,λ = 0. (8)

T 00 can be assumed to be of order 2,T 0k of order 3 andT kl of order 4. This
corresponds to the EIH assumption that the mass is of 2nd order. Expanding into
a power series the retarded solution

γ µλ(r , t) = −4
∫
dV ′T µλ(r ′, t − R)/R (9)

of equation (8), we find that

T
2

00
,0 + T

3

0k
,k = 0 implies γ

3

00 = 0, and

T
3

k0
,0 + T

4

kl
,l = 0 implies γ

4

0k = 0. (10)

Thusγ
5

ik is the first non-vanishing radiation term, and from (9) and (10):

γ
n

µλ = O(rn−5) for n > 4. (11)

In the theory of gravitation we have

gµλ =
∞∑
n=0

g
n
µλ (12)
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whereg
0
µλ = ηµλ andg

1
µλ = 0. ExpandingRµλ into a power series we obtain

equations forg
n
µλ which, in empty space-time, have the form

0 = R
n
µλ = linear function of g

n
µλ,ik, ġ

n−1
µλ,i , g̈

n−2
µλ

+ nonlinear function of g
n−2

µλ, . . . , g
2
µλ.

Thus a solution for anyg
n
µλ will contain both terms of linear origin and terms of

nonlinear origin. For example

g
4

00 = term coming fromg̈
2

+ terms coming fromg
2
· g

2
.

The first terms give rise to the same limitation as in electrodynamics:r � λ. If
we apply the EIH method to a system of bodies whose masses are of orderm

then the nonlinear terms ing
4

00 contain expressions likem2/r2 and we must have

r � m. Further, ifv is a characteristic velocity andl denotes a distance between
the bodies we must haver = l � λ or v � 1. In sum, the applicability of the
EIH method is limited by the following conditions

m � r � λ, v � 1.

The first of these inequalities, which is connected with the nonlinearity of Ein-
stein’s equations, is common to this and other approximation methods. The second
and third limitations are due to the distinguished role played by the time in the EIH
method. It follows from these that the method is not well suited to the description
of radiative phenomena.

The linear part ofg
n
µλ can easily be calculated from (9). We may expectg

n
µλ

also to go likern−5 (n > 4), unless some nonlinear terms ing
n
µλ cancel out the

rn−5 terms in the linear part. In general, we cannot impose on theexpandedmetric
the condition limr→∞ g

n
µλ = 0. However, this does not necessarily mean that the

metric is non-flat at infinity.
2. Equations of motion. The equations of motion of singularities were ob-

tained by Einstein, Infeld and Hoffmann [19] from the vanishing of certain surface
integrals. The basic idea of this method can be explained in terms of electrody-
namics; there the conservation of charge is an “equation of motion” which follows
from the field equations alone. Assuming thatAα has been expanded into a power
series, we can write Maxwell’s equations in the form

A
n

0,ss = A
n−1

s,s0, (13a)
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A
n+1

r,ss − A
n+1

s,rs = A
n−1

r,00 − A
n

0,0r (13b)

If, as before, we putA
0
α = A

1
α = 0, thenA

2
0 satisfies a Laplace equation and

we may takeA
2

0 = e(t)/r wheree(t) is an arbitrary function of time. Equations

(13b), which in the present case become

rot rot A
3

= −grad Ȧ
2

0, A = (A1, A2, A3) (13c)

are not independent; the divergence of the left hand side of (13c) vanishes identi-
cally (“strongly”). The divergence of the right-hand side also vanishes, by virtue
of (13a). However, this is not sufficient to ensure the integrability of (13b) or
(13c). The flux of rot rotA

3
through a closed surface vanishes, and so also must

the flux of gradȦ
2

0. The equation1A
2

0 = 0 tells us that the flux of graḋA
2

0

does not depend on the shape of the surface (provided that we do not cross the
singularity when deforming the surface). This means that the vanishing of the flux
imposes a condition only on the singularity itself. We can calculate the flux of
−grad Ȧ

2
0 through a spherer = const; this turns out to be 4πė. Thereforeemust

be a constant.
The situation is analogous in Einstein’s theory and can be presented in a

concise form if one uses the superpotentials [4] (lecture I). The empty space field
equationsGµ

k = 0 may be written

Uµ
sk

,s
+ Uµ

0k
,0

+ tµ
k = 0. (14)

Contracting withnk and integrating over a closed surface we obtain (sinceUµ
ks

is skew ink ands!)
d

dt

∮
Uµ

0knkdS +
∮
tµ
knkdS = 0, µ = 0,1,2,3. (15)

If we have an exact solution of the field equations, then (15) is identically satisfied
and does not tell us anything. But if we use the EIH approximation method, and
if we expand (14) then the conditions (15) written up to thel-th order will contain
only known fields (of order< l) and will give non-trivial equations of motion (for
µ = 1,2,3). Equation (15) forµ = 0 gives the conservation of energy.

Let us illustrate this by the simplest case, the Newtonian equations. From
R
2

00 = 0 we have

1g
2

00 = 0. (16)

As a solution of this equation we may take

g
2

00 = −∑2m/r, (17)
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wherem denotes the mass of a body andr is distance from it; the summation is
to be carried out over all particles.R

2
ik = 0 gives the equation forg

2
ik; it appears

that a possible solution is

g
2
ik = δik g

2
00. (18)

The lowest order fields are linear in the masses and therefore can also be evaluated
from (9); g0k is at least of order 3 and the problem of radiation does not appear
before the 5th order. The knowledge ofg

2
00 andg

2
ik is sufficient for writing down

the following surface integral

d

dt

∮
U
2

0
k0nkdS = 0

(t0
k is of order 5 at least). Evaluating this integral around each of the singularities,

we get

m = const.

The field equations forg
3

0k

g
3

0k,ss − g
3

0s,ks = g
2
ks,0s − g

2
ss,0k

are now integrable (sincem = const. !) and lead to

g
3

0k =
∑

4mẏk/r (19)

whereyk = yk(t) are the coordinates of a particle, as yet arbitrary. The following
surface integrals give theNewtonian equations of motion:

d

dt

∮
U
3
i
k0nkdS +

∮
t
4
i
k0nkdS = 0.

Infeld [25], [37] developed a formalism in which particles are treated as
singularities described by means ofδ functions. In this formalism it is necessary
to define the value of some singular functions on the world lines of the particles.
If φ(t, xk, ys(t)) is a function depending on a world-lineys and singular on this
world-line (e.g.φ = |r − y(t)|−1) then

φ̃(t) = (φ − part ofφ singular atx = y)xk=yk .

For a regular functionφ we can write

φ̃ =
∫
φ(t, xk, ys)δ(3)

(
xs − ys

)
dV . (20)
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Infeld and Plebánski [35] introduced some “good”δ functions which allow us to
write an equation like this even for singular functionsφ. The modifiedδ̂(x) is
defined by its regular modelδ̂(α, x) which possesses the following properties:

δ̂(x)" = " lim
α→0

δ̂(α, x) = 0 for x 6= 0

lim
α→0

∫ ∞

−∞
δ̂(α, x)f (x)dx = f (0) for a continuousf

lim
α→0

∫ ∞

−∞
δ̂(α, x)|x|−kdx = 0 for k = 1,2, . . . p.

The∼ operation is not distributive in general but we shall assume that it is so when
applied to functions occurring in our work:̃αβ = α̃β̃. The energy-momentum
tensor density of a system of pole particles can now be written

T αβ =
∑∫ ∞

−∞
µαβδ̂(4)

(
xλ − yλ(s̃)

)
ds̃ = ∑

µαβδ̂(3)

(
xk − yk(t)

)
ds̃/dt

(21)
wheres̃ is defined byds̃2 = g̃αβdy

αdyβ . It was shown by Tulczyjew [36] that
µαβ = m0y

′αy′β (y′α = dyα/ds̃
)

andm0 = const. We can rewrite (21) in the
form

T αβ =
∑

mẏαẏβ δ̂(3)(x − y), m = m0dt/ds̃, ẏα = dyα/dt.

The equations of motion are obtained by integratingT αβ ;β ≡ T αβ,β+T µλ
{
α
µλ

} =
0 over the neighbourhood of one particle:

0 =
∫
T αβ ;βdV =

∫ [
(mẏαẏβ δ̂(3)),β +mẏµẏλ

{
α

µλ

}
δ̂(3)

]
dV

=(mẏα). +m

{̃
α

µλ

}
ẏµẏλ.

It follows from this thatmds̃/dt = m0 = const and that

m0

(
d2yα

ds̃2
+
{̃
α

µλ

}
dyµ

ds̃

dyλ

ds̃

)
= 0. (22)

The equations of motion of heavy bodies have thus also the form of “geodesic”
equations. We can eliminateds from (22) and write the 3 equations of motion in
the form

ÿk +
({̃

k

µλ

}
−
{̃

0

µλ

}
ẏk

)
ẏµẏλ = 0. (23)
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In this notation the Newtonian equations readÿk + 2
{̃
k2
00

}
= 0. It can be easily

seen from (23) that if we know the equations of motion of then-th order, then we
will be able to write(n + 1)th order equations if we calculateg

n−3
ik , g

n−2
0k and

g
n−1

00. However, it has been shown by Bażánski that in a Lagrangian formalism

[37], it is sufficient to know the explicit form ofg
2

00 andg
3

0k (and not necessarily

g
4

00) in order to write down the post-Newtonian equations of motion.

3. The arbitrariness in the choice of coordinates. Let us perform the coordi-
nate transformation

x0 = x′0 + a
n+1

0 (x′µ) , xk = x′k + a
n

k
(
x′µ) . (24a)

The first terms affected by it are (aα = ηαβa
β )

g′
n+2

00 = g
n+2

00 + 2 a
n+1

0,0,

g′
n+1

0k = g
n+1

0k + a
n+1

0,k + a
n
k,0, (24b)

g′
n
ik = g

n
ik + a

n
i,k + a

n
k,i .

It can easily be seen that if(g
n
ik, g

n+1
0k, g

n+2
00) is a solution of the field equations,

then(g′
n
ik, g

′
n+1

0k, g
′

n+2
00) is also a solution of the same equations, representing the

same physical situation in a different coordinate system. Theformof the equations
of motion considered as functions of the y’s obviously depends on the coordinate
system used. Similarly, in the ordinary geodesic equation

y′′α + 0αµλ(y)y
′µy′λ ≡ Gα

(
y′′µ, y′λ, yβ

) = 0,

the form of the functionGα depends on the coordinate system. More precisely
the equations of motion of ordern + 4 (n = 0,2, . . .) depend on a

n−1
0 anda

n

k

(and also on coordinate changes of lower orders). The form of the Newtonian
equations cannot be affected unless the Galilean character ofg

0
αβ is destroyed

by the transformation. The post-Newtonian equations depend on the choice ofa
2
k

in g
2
ik = δik g

2
00 + a

2
i,k + a

2
k,i . The casea

2
k = 0 corresponds to the choice of

harmonic coordinates in this approximation.
Sometimes doubts are raised as to the physical meaning of conclusions drawn

from equations of motion which depend on the frame of reference. The answer
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to this objection is rather easy and can be made trivial by the following example:
consider the curvex1 = sinx2. This is a sine curve if the metric isds2 = dx1

2 +
dx2

2 or a circle ifds2 = dx1
2 + x1

2dx2
2. An equation of motion has no intrinsic

meaning of its own. It is only the knowledge of equations of motion (or of a
solution thereof)andof the corresponding metric which enables us to draw some
physical (observational) conclusions, e.g., as to the advance of the periastron.
In some special cases (e.g. static or periodic metric) it is not necessary to make
explicit use of the form of the metric tensor.5

It is possible to simplify the equations of motion of a given order but only at
the price of complicating the metric [28,32].

4. Radiation terms in the EIH method. The structure of Einstein’s equations
is such that wecanchoose solutions of the form

g00 = 1 + g
2

00 + g
4

00 + g
6

00 + . . . ,

g0k = g
3

0k + g
5

0k + g
7

0k + . . . , (25)

gik = −δik + g
2
ik + g

4
ik + g

6
ik + . . .

By analogy with the scalar wave equation and Maxwell’s theory we can interpret
solutions of the form (25) as representing standing wave fields (no secular losses
of energy by radiation). It is only these solutions which were considered in the
classical papers on the EIH method [19–25]. In order to get solutions correspond-
ing to “retarded” or “advanced” fields we must supplement the series (25) with
the missing terms: odd ing00 andgik and even ing0k (“radiation terms”). The first
of these radiation terms satisfy linearhomogeneousequations and we may expect
they are linear in the masses and hence their form can be derived from the linearized
theory. The electromagnetic analogy suggests that the first radiation terms depend
only on time and apparently can be removed by a coordinate transformation (24a);
e.g., ifg

5
00 = f (t) anda

4
0 = −1

2

∫
f (t)dt theng′

5
00 = 0 [28–30]. However, the

whole field(g
n
ik, g

n+1
0k, g

n+2
00) can be annihilated by means of (24a) when and

only when the following conditions are satisfied:

g
n+2

00,ik + g
n
ik,00 − g

n+1
i0,k0 − g

n+1
k0,i0 = 0,

5 Some of these remarks are due to discussions with Dr.W. Tulczyjew. The topics raised in this lecture
are thoroughly discussed in a monograph on the problem of motion in general relativity which is
being prepared by Professor L. Infeld and Dr. J. Plebański. [Note added by the Editor: The reference
is: L. Infeld, J. Plebánski, Motion and relativity. PWN and Pergamon Press, Warsaw and Oxford
1960.]
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g
n+1

0m,ik + g
n
ik,0m − g

n+1
0i,km − g

n
km,0i = 0, (26)

g
n
im,kl + g

n
kl,im − g

n
il,km − g

n
km,il = 0.

That is to say, equations (26) constitute a system of necessary and sufficient
conditions for the existence of functionsa

n+1
0 anda

n
k such thatg′

n
ik = g′

n+1
0k =

g′
n+2

00 = 0. It was remarked by Goldberg [31] that starting withg
n
ik = fik(t) we

can choose solutions of the field equations in the(n+ 1)th and(n+ 2)th orders
such that the conditions (26) will not be satisfied. However it must be noted that
since the solutions of the field equations are non unique, we can also start with
the sameg

n
ik and obtain functionsg

n+1
0k and g

n+2
00 which can be annihilated. For

example the field

g
n
ik = fik(t), g

n+1
0k = 1

2x
sḟsk, g

n+2
00 = 0

is flat, but the field

g
n
ik = fik(t), g

n+1
0k = 0, g

n+2
00 = −r2f̈ss/6

is empty and non-flat unless̈fik = 1
3δikf̈ss (spherical symmetry), namely

g
n+2

00,ik + g
n
ik,00 − g

n+1
i0,k0 − g

n+1
k0,i0 = f̈ik − 1

3δikf̈ss .

The exact form of the first radiation terms for a system of point particles can be
obtained from (9). Thelinear partof g

n
αβ is connected toγ

n
αβ by the equation

g
n

linear
αβ = ηαµηβλ

(
γ
n

µλ − 1
2η
µληπρ γ

n

πρ
)
. (27)

From (9) and (27) we have

g
3
ik = 0, (28a)

g
4

0k = − γ
4

0k = −4
∑

mÿk = 0. (28b)

The last equality holds by virtue of the Newtonian equations of motion [26] and
is to be read:

∑
mÿk is at least of order 6.

g
5

00 = 2

3!

∑ d3

dt3
mr2 + 2

∑ d

dt
mẏs ẏs . (28c)

The field defined by (28) is trivial and can be annihilated by a coordinate transfor-
mation. It was shown by Infeld that this field does not contribute to the equations
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of motion of the 7th order. The next radiative set is
(
g
5
ik, g

6
0k, g

7
00
)

and we have

from the linearized theory:

g
5
ik = 4

∑ d

dt
mẏi ẏk + δik

∑(
1

3

d3

dt3
mr2 − 2

d

dt
mẏs ẏs

)
, (29a)

g
6

0k = −4
∑

mÿk − 4

3!

∑ d3

dt3
mr2ẏk. (29b)

The equation forg
7

00 is inhomogeneous and must be solved. We obtain

g
7

00 = 2

5!

∑ d5

dt5
mr4 + 2

3!

∑ d3

dt3
mr2ẏs ẏs + g

5
ik

∑
mr,ik

+( g
5

00 + 1
2
g
5
ss

)
g
2

00. (29c)

The fields (29) cannot be annihilated by a coordinate transformation.
5. Radiation damping in the problem of two bodies. Gravitational radiation

does not occur in the 4th (Newtonian), 6th (post-Newtonian) and 8th (never
explicitly evaluated) approximation orders, but it can occur in the 9th order. It
is not possible to write down the equations of motion up to 9th order explicitly
because we do not know the contributions of order 8 (the knowledge ofg

4
ik, g

5
0k

andg
6

00 is needed for this). However, in some simple cases we can foresee the

form of 8th order contributions and write down the 9th order corrections.
Let us take the example of two bodies of equal massm that in the nonradiative

approximations move uniformly along a circle of (coordinate) radiusR. We choose
the origin of the spatial coordinates at the centre of inertia and denote byyk(t) the
coordinates of one of the bodies. The equations of motion up to 8th order have
the form

ÿk + ω2
(
m, ysys, ẏkyk, ẏmẏm

)
yk = 0

and admit solutions of the form

y1 = R cosω0t, y2 = R sinω0t, y3 = 0. (30)

The 9th order corrections can be evaluated from (23) using the field given by (29).
It turns out that the equations of motion up to 9th order have in our case the form

ÿk + 2α
(
m, ysys, ẏmym, ẏnẏn

)
ẏk + ω2yk = 0. (31)

Hereα is of 6th order and is constant by virtue of (30); a laborious computation
gives

α = 3

20

m3

R4
. (32)
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Table summarizing the information necessary to obtain the equations of motion from the “geodesic”
equation (22)

Equations
of
motion
of order

Orders of
needed
fields

these
fields
depend
on

Equations
of motion
depend
on

Orders of non-vanishing com-
ponents of the Riemann tensor
derivable from the correspond-
ing field

gik gok goo a0 ak a0 ak Riook Riokl Riklm

4 (Newtonian) 0 1 2 1 0 – 0 2 – –
6 ( EIH ) 2 3 4 3 2 1 2 4 3 2
8 (not evaluat.) 4 5 6 5 4 3 4 6 5 4
9 (1st radiat. corr.) 5 6 7 6 5 4 5 7 – –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω2 contains a nonlinear term of second order so that the equation (31) is in reality
nonlinear. The damping term 2αẏk excludes the possibility of periodic solutions.
It is not easy to give a clear physical interpretation to this result; in particular we do
not know if the diminishing of thecoordinatedistance between the particles (due
to α > 0) is accompanied by a decrease of thegeometricaldistance. However, it
seems to be proved by this contribution that gravitational radiation induces secular
changes in the motion of bodies.

LECTURE IV

THREE PROBLEMS OF GENERAL RELATIVITY

1. Propagation of gravitational disturbances. Einstein’s field equations are (for
physically acceptable metrics) of the hyperbolic type, and as such admit non-
analytic solutions. The existence of such solutions is essential for the transmission
of information [38]. Non-analytic functions can possess discontinuities in deriva-
tives of a certain order and it is of some interest to study the form of these
discontinuities. They can occur, for example, at the front of a wave and the
knowledge of their behaviour can provide some information about the wave itself.

In electrodynamics we may assume that the discontinuities occur in the first
derivatives of the electromagnetic field. It turns out that the discontinuities can take
place only on null hypersurfaces. This means they must move with the velocity
of light. Denoting by1F the jump of a fieldF across the hypersurface6 defined
by f (x) = 0, we have [14]

1E,α = ef,α, 1H,α = n × ef,α, n · e = 0,
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wheren = gradf/|gradf |. The geometrical structure of the discontinuity re-
sembles in this case that of the plane wave. It will be seen that the situation is
similar in the theory of gravitation.

With Lichnerowicz [9] let us assume that the Riemannian space-timeV4 is
such that there exist (at least locally) coordinate systems in whichgµλ is of classC1

and piecewise of classC3. We shall restrict ourselves to these coordinate systems
only; therefore the admissible coordinate transformations will be of class (C2,C4

piecewise). The discontinuities ofgµλ,αβ , across6 (f = 0) can be written in the
form [14, 39]:

1gµλ,αβ = hµλf,αf,β . (1)

By virtue of the assumptions on the differentiable structure ofV4 the functions
hµλ and

h′
µλ = hµλ + hµf,λ + hλf,µ, (hµ = arbitrary), (2)

represent (geometrically) the same discontinuity [40]. If1Rµλαβ = 0, then one
can choosehµ so as to obtainh′

µλ = 0; in this case the discontinuities have
no physical meaning and are due to the coordinate system. Assuming the empty
space-time equationsRµλ = 0 we obtain some conditions onhµλ, namely

gαβ
(
hµλf,αf,β + hαβf,µf,λ − hµαf,λf,β − hλβf,µf,α

) = 0. (3)

If gαβfαf,β 6= 0 then (3) implies

hµλ = aµf,λ + aλf,µ

and the discontinuity is spurious. “True” discontinuities can appear only on null
hypersurfaces; in this case equation (3) is equivalent to [40]

(hµ
ν − 1

2δµ
νhτ

τ )f,ν = 0, gρσ f,ρf,σ = 0 (4)

and1Rµλαβ can be put in the form [13]

1Rµλαβ = mµλmαβ − nµλnαβ (5)

(m andn are simple null bivectors) corresponding to type II with vanishing scalar
invariants [12, 41], (lecture I). The local geometry of a gravitational disturbance
is thus the same as the local geometry of a plane wave.

Equations (3) or (4) constitute some algebraic conditions which must be
fulfilled by the discontinuities. However, if a field of discontinuitieshµλ is given
on a 2-surfaceS lying on a space-likeσ then its further propagation is determined
by the field equations. It follows from this argument that the conditions (4) should
be supplemented by some differential equations describing the evolution ofhµλ in
time. We shall now derive these equations and apply them to study the propagation
of discontinuities in Schwarzschild space-time [42].
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Let us assume thatf = const is the equation of a family of null hypersurfaces
and6 (f = 0) is one of them. The curvesxµ = xµ(λ) defined on6 by

dxα/dλ = gαβf,β (6)

are null geodesics (they are bicharacteristics of Einstein’s equations) and it is
possible to obtain an equation describing the behaviour of the discontinuities
along these “gravitational rays.” Let us take a coordinate system in whichf ≡ x0

(thusg00 ≡ 0) and calculate1Rik,0 = 0. These are equations we are seeking for,
but written in a non-covariant form. We can find the covariant equations imposing
on them the following conditions:

1) they should reduce to1Rik,0 = 0 whenf ≡ x0;
2) they should determinehµλ only up to a transformation (2).

The result is

2
D

dλ
1Rµλαβ +of1Rµλαβ = 0. (7)

where

of = gµλf;µλ, 1Rµλαβ = 1
2f,[µhλ][αf,β] .

The following properties of (7) are of interest: these ordinary differential equations
are linear and homogeneous in1Rµλαβ ; thus if1Rµλαβ = 0 at a point of the
curvexα = xα(λ), then1Rµλαβ vanishes along the whole curve. If the algebraic
conditions (3) are satisfied on an initial surfaceS, then they will be satisfied by
virtue of (7) on the whole of6. If 6 is harmonic (of = 0) then the tensor
1Rµλαβ is parallelly propagated.

As an example, let us consider the propagation of discontinuities in a space-
time which initially possessed the Schwarzschild metric

ds2 = (1 − 2m/r)dt2 − dr2/(1 − 2m/r)− r2
(
dθ2 + sin2 θdφ2

)
. (8)

At the timet = 0 on the surfacer = r0 there appears a discontinuity characterized
by1Rµλαβ(0, r0, θ, φ) = 1Rµλαβ(r0); it will propagate along a hypersurface6
with equation

f = t − F(r) = 0, gµλf,µfλ = 0, F (r0) = 0.

We findF(r) to be

F(r) = r − r0 + 2m log
r − 2m

r0 − 2m
, (r > r0 > 2m).

Solving (6) for the metric given by (8) one obtains the 2-parameter family of
geodesics:

t = r − r0 + 2m log
r − 2m

r0 − 2m
, θ = const, φ = const,
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(r is used instead of the parameterλ). The equations (7) can now easily be solved;
it is convenient to express the result in terms of the physical components [43]
of 1Rµλαβ . We introduce the tetrads of orthonormal vectorsλµα (α, β, . . . =
0,1,2,3 label the vectors) as follows:

λµ0 =
(
1/
√

1 − 2m/r,0,0,0
)
,

λµ1 =
(
0,
√

1 − 2m/r,0,0
)
,

λµ2 = (0,0,0,1/r,0),

λµ3 = (0,0,0,1/r sinθ).

The physical components of1Rµλαβ are defined by

1Rµλαβ = 1Rµλαβλ
µ
µλ

λ
λλ
α
αλ
β
β.

The result of the calculation is

1Rµλαβ(r) = 1Rµλαβ(r0)(r0 − 2m)/(r − 2m). (9)

It is worth noting that1Rµλαβ behaves liker−1 for large values ofr; this re-
sult seems to confirm to some extent the general hypothesis about gravitational
radiation formulated in the first lecture.

2. Conservation laws and symmetry; properties of space-time. A Lorentz-
covariant field theory in flat space-time possesses 10 conservation laws which
correspond to the 10-parameters group of motions of Minkowski space-time.
In general relativity one can formulate some conservation laws involving the
pseudotensor of energy and momentum of the gravitational field. The physical
meaning of these laws is that the energy of matter and the electromagnetic field
can be transformed into the gravitational energy and vice-versa; the “physical”
energy of matter alone is not conserved. However, if the space-time admits a
group of motions, then it is possible to find some covariant conservation laws,
not involving the pseudotensor of the gravitational field. Ifvα is a generator of a
group of motions, i.e.

vµ;λ + vλ;µ = 0 (10)

andT αβ is the energy-momentum tensor of matter, then [22](
T αβvβ

)
,α = T αβ ;αvβ + T αβvα;β = 0. (11)

The number of theseconservation laws of matteris equal to the number of
parameters of the group of motions [10]. There are 10 laws of the form (11)
only in spaces of constant curvature [22]. If the matter field is conform-invariant
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(which meansT = Tµ
µ = 0) then the equation (11) gives a conservation law also

in the more general case whenvα represents the generator of a group of conformal
transformations, i.e., whenvα satisfies [44]

vµ;λ + vλ;µ = 2αgµλ. (12)

As an example, we can take a flat space-time and the Maxwell field [45]. Equations
(12) in Minkowski space-time have 15 independent solutions: 10 motions and 5
infinitesimal conformal transformations which are not motions (as generators one
can take:vα = exα, vα = 2eβxβxα − eαxβx

β ).
It is easy to write down the conservation laws in a form corresponding to

the canonical laws of special relativity [46]. Letψ denote a physical field (not
gµλ) andL(ψ,ψ,α, gµλ) the corresponding Lagrangian density, supposed to be a
form-invariant function of its arguments. Ifδ∗ψ is the “substantial” variation of
ψ corresponding to the infinitesimal transformationx′α = xα + vα, i.e. δ∗ψ =
ψ ′(x)− ψ(x), then thevector density

Iµ = Lvµ + δ∗ψ∂L/∂ψ,µ (13)

is divergence-free ifvα satisfies (12) andαT = 0 [47]. All these conserva-
tion laws are “weak,” i.e. they hold when the free field equations forψ are
satisfied.

It is well known also that the number of independent first integrals of the
equations of geodesics is equal to the number of parameters of the group of
motions [44]. Ifxµ = xµ(s) is a geodesic then

vαdxα/ds = const.

A generalization of this theorem to the case of particles interacting with physical
(electromagnetic, scalar) fields is given in [10]. For null geodesics the expression
vαdxα/dλ is a first integral also in the case whenvα generates a conformal
transformation.

3. The “fast” approximation method. As has been said before, the EIH
method is not well suited to the investigation of gravitational radiation. It is
therefore necessary to have recourse to another method of approximation, in
which the time is treated on the same footing as the space coordinates. This
“fast” or “old” approximation method was used by Einstein as early as in 1916
[48]. Einstein assumed that the field is weak and can be written in the form
gαβ = ηαβ + hαβ and that terms nonlinear inhµλ may be neglected in the
field equations. This approach constitutes essentially the first step of an approx-
imation method, which can be continued further. Namely, we can assume the
expansion

gαβ = ηαβ + k h
1
αβ + k2

h
2
αβ + . . . ,
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wherek is a parameter which may be identified with the gravitational constant or
with some characteristic mass in the problem [49]. If we write Einstein’s equations
in the form

Gµ
λ = −κTµλ, κ = 8πk (14)

and assume the expansions ofTµ
λ andGµλ

Tµ
λ = T

0
µ
λ + kT

1
µ
λ + . . . , Gµ

λ = kG
1
µ
λ + k2

G
2
µ
λ + . . .

(
G
0
µ
λ ≡ 0

)
,

then (14) becomes

G
1
µ
λ = −8πT

0
µ
λ, G

2
µ
λ = −8πT

1
µ
λ, . . . (15)

Einstein restricted himself to the first of equations (15). Fock [11], [22] and Bonnor
[49] found some partial and special solutions of the second order equations. We
shall now briefly discuss the theory of the first order approximation ink, which is
known as

A) The linearized theory of gravitation. In many textbooks on general rel-
ativity this theory is presented in connection with the problem of gravitational
waves and radiation. It seems important to realize to what extent this theory is
different from, and which of its results have their counterparts in, Einstein’s theory
of gravitation. In this section we shall drop the index belowh

1
µλ, and writeHµλ

instead ofG
1
µ
λ andUµλ instead ofT

0
µ
λ. The field equations of the linearized

theory become

Hµ
λ ≡ Sµ

λ − 1
2δµ

λS = −8πUµ
λ (16)

whereS = Sλ
λ and

Sµλ = ηαβSµαβλ,

Sµλαβ = 1
2

(
hµβ,λα + hλα,µβ − hµα,λβ − hλβ,µα

)
. (16a)

The indices are raised and lowered by means of the Minkowski eta. The field
equations are invariant with respect to the gauge transformations

hµλ → h′
µλ = hµλ + aµ,λ + aλ,µ (17)

and can be derived from a variational principle. For the Lagrangian density of the
free field we can take

H = 1
2

(
hµλ,αh

αλ,µ − hµλ
,λhα

α,µ + 1
2hµ

µ
,λhα

α,λ − 1
2hµλ,αh

µλ,α
)

(18)
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H is not invariant with respect to (17), but transforms according to the lawH →
H ′ = H +Qβ

,β [50]. From this follow the “Bianchi” identities

Hµλ
,λ ≡ 0 (19)

and the existence of superpotentialsVµαβ = −Vµβα such that

Hαβ = V αλβ,λ, Vµ
νλ = 1

2η
α[βδµ

νηλ]τ hαβ,τ . (20)

It is not possible to form a gauge-invariant function ofhµλ andhµλ,α alone. The
equationSµλαβ = 0 is a necessary and sufficient condition for the existence of
functionsaµ such thath′

µλ = 0. The 20 functionsSµλαβ have essentially the same
properties as the 20 components of the Riemann tensor:

Sµλαβ = Sαβµλ = −Sλµαβ, Sµ[λαβ] = 0, Sµλ[αβ,τ ] = 0. (21)

The necessary conditions (21) are also locally sufficient for the existence ofhαβ
such that (16a) is true. This theorem seems to be connected with the problem of
finding the metric for a given curvature tensor. The equations (16) and (21) are
analogous to Maxwell’s equations without potentials:f µλ,λ = −4πjµ,f[µλ,α] =
0. In the linearized theory it is possible to solve the equations for the “field”Sµλαβ ,
without any reference to the “potentials”hµλ.

However, it is easier to normalize the potentials by means of the Einstein–
de-Donder condition

γ µλ,λ = 0, (22a)

where

γµλ = hµλ − 1
2ηµλη

αβhαβ, (22b)

and then write the field equations in the form

oγ µλ = 16πUµλ. (23)

Uµλ has to satisfy the conservation law

Uµλ,λ = 0. (24)

Under some reasonable assumptions aboutUµλ, the retarded solution of (23)
satisfies equations (22a). The 4 continuity equations impose some conditions
on the source of the field; for example, pole particles interacting with thehµλ
field have to move uniformly along straight lines. The “equations of motion” for
singularities can be obtained from the surface integrals

d

dt

∮
Vµ

0knkdS = 0.
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Figure 2.

However, the conditions (24) do not exclude the possibility of “wave solutions”,
depending on arbitrary functions of time. For example, if we take a quadrupole
source [51, 52]

U00 = αklδ,kl, U0k = −α̇klδ,l, Ukl = α̈klδ, (25)

whereαkl = αlk(t), then (24) is satisfied for arbitraryαkl(t). Einstein and Ed-
dington calculated the retarded field corresponding to (25) and, introducing it into
the energy-momentum pseudotensor, evaluated the total energy radiated by these
“gravitational waves.” However, it is necessary to be very cautious in interpreting
the results obtained by this method. Indeed,αkl can be a periodic function and by
the Einstein-Eddington method we obtain in this case a permanent outflow of radi-
ation. On the other hand, it is obvious that a periodic metric excludes the possibility
of secular changes which accompany a permanent outgoing wave. Periodic grav-
itational fields can describe standing-wave processes only. Further, we can regard
ηµλ+khµλ (wherehµλ is calculated from (22b), (23) and (25)) as an exact metric
of a space-time filled with matter described byθµλ ≡ −κ−1Gµλ

[
ηαβ + khαβ

]
.

In this case the total radiated energy and momentum will be defined by the time
integral of the flux ofθµ

k + tµ
k through a large sphere and can be shown to be

equal to zero. In order to draw some physical conclusions it seems necessary to
pass to

B) higher approximations. If the h
1
µλ field really represents an outgoing

gravitational wave, one expects to find in the 2nd order a decrease of the total
energy (mass) of a radiating system. For example, we may take a Schwarzschild
field of massm, “superimpose” on it the field due to (25) whereαkl is a pulse, i.e. a
regular function vanishing outside the interval 0< t < T and compare the initial
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massm (region A) with the total final energy (region B,t → ∞). It is not obvious
that the metric must be a Schwarzschild one in the region B, but it seems plausible
to assume that the metric in B is static, at least asymptotically fort → ∞. If this
is the case, it is possible to determine the mass in region B by investigating the
1/r terms in the metric. SupplementingUµλ = T

0
µλ given by the formulae (25)

by a term representing a point massm, it is possible to write the first order field
in the form

γ
1

00 = −4m/r − 4
(
αkl(t − r)/r

)
,kl
,

γ
1

0k = −4
(
α̇kl(t − r)/r

)
,l
, γ

1
kl = −α̈kl(t − r)/r. (26)

γ
n
µλ is related toh

n
µλ by a formula of the same form as (22b). In the second order

we can assumeT
1
µλ = 0. Imposing onγ

2
µλ the conditionγ

2

µλ
,λ = 0 we can write

the field equations in the symbolical form

o γ
2

= γ
1

· γ
1
. (27)

The right-hand side of this equation is a function quadratic inγ
1
αβ,ν . Fock [11],

[22] found an approximate solution of (26):

γ
2
µλ = F(n, t − r)r−1 logrkµkλ + . . . , (28)

where the dots stand for terms which for larger are small when compared with
logr/r, andF denotes a function with the following properties

F(n, t) =
{

0 for t 6 0,
F (n) > 0 for t > T .

F (n) is proportional to the energy radiated by the system (as calculated from the
pseudotensor) in a unit solid angle characterized byn. However, it is not possible
to evaluate the mass of the field given by (26), (28) in region B. The integral∮
U0

0knkdS calculated up to the second order is divergent because of the logr/r

term.
Bonnor [49] has attacked a similar problem by a method slightly different

from the approach presented above. He assumes the axial symmetry of the radiat-
ing system (two particles connected by a spring) and introduces a non-harmonic
coordinate system in which the metric is diagonal. The fieldh

2
µλ found by Bonnor

is time dependent in region B, but for larget contains only 1/r (and smaller)
terms. The logr/r terms appear also in his calculation but only with nonsecular
coefficients (vanishing in region B). The decrease of the gravitational mass defined
by the 1/r terms is exactly equal to the total radiated energy, calculated from the
pseudotensor.
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C) Spherically symmetric scalar radiation field in general relativity. The
method of approximation with respect tok can also be applied when the gravita-
tional field interacts with some other physical fields. This can be illustrated by the
example of a “model” scalar fieldφ satisfying the covariant wave equation(√−ggµλφ,λ

)
,µ

= 0. (29)

Let us take the simplest case, namely that of a spherically symmetric field
and assume

ds2 = eµdt2 − eλdr2 − r2
(
dθ2 + sin2 θdφ2

)
, and

φ = φ(r, t), µ = µ(r, t), λ = λ(r, t). (30)

We shall find an approximate solution of (29) and of Einstein’s equations,
corresponding to an outgoing scalar wave. It will appear that thegravitational mass
is diminished by an amount equal to the total energy carried out by theφ-field.
The energy-momentum tensor for theφ-field was given in lecture I. Einstein’s
equations and the wave equation (29) become

e−λ
(
λ′/r − 1/r2

)
+ 1/r2 = k

(
e−λφ′2 + e−µφ̇2), (31a)

e−λ
(
µ′/r + 1/r2

)
− 1/r2 = k

(
e−λφ′2 + e−µφ̇2), (31b)

e−λλ̇/r = 2ke−λφ̇φ′, (31c)(
r2e(λ−µ)/2φ̇

). − (
r2e−(λ−µ)/2φ′)′ = 0, (31d)

where the dot and the prime denote, respectively, the derivatives with respect tot

andr. The total energy contained in the field given by (30), whereλ,µ = O(r−1),
is equal to

P0 =
∮
U0

0knkdS = lim
r→∞ rλ/(2k).

The radiated power is

W0 = Ṗ0 = lim
r→∞ rλ̇/(2k) = lim

r→∞ r
2φ̇φ′.

The last equality holds by virtue of (31c). Assuming the expansions

φ = φ
0

+k φ
1

+ . . . , λ = k λ
1
+k2

λ
2
+ . . . ,

µ = k µ
1

+k2µ
2

+ . . .
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one gets the linearized equations

r λ′
1

+ λ
1

= r2(φ̇
0

2 + φ′
0

2)
, (32a)

r µ′
1

− λ
1

= r2(φ̇
0

2 + φ′
0

2)
, (32b)

λ̇
1

= 2r φ̇
0
φ′
0
, (32c)

(r2 φ̇
0
). − (r2 φ′

0
)′ = 0. (32d)

A possible solution of (32d) isφ0 = a(t − r)/r, wherea(t) is a regular “pulse”
function (vanishing fort < 0 andt > T ). The general solution of (32a) and (32c)
is

λ
1

= 2m/r − (2/r)
∫ t−r

0
ȧ2(t ′)dt ′ − a2(t − r)/r.

The system of coordinates defined by (30) is determined to within a transformation
of the time: t → t ′ = f (t). Accordingly, the solution forµ will contain an
arbitrary function of time. We can choose it in such a way as to obtain a time-
independent metric in region A:

µ
1

= −2m/r + (2/r)
∫ t−r

0
ȧ2(t ′)dt ′

−2
∫ t−r

0

(
2ȧ2(t ′)(t − t ′)−1 + a(t ′)ȧ(t ′)(t − t ′)−2

)
dt ′.

Finally, we have in region A (t − r < 0):

λ
1

= 2m/r, µ
1

= −2m/r,

and in region B (t − r > T ):

λ
1

= 2(m−1m)/r, µ
1

= −2(m−1m)/r + function of time alone,

where

1m =
∫ T

0
ȧ2(t ′)dt ′.
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The first order field in region B corresponds also to a Schwarzschild field, because
the function of time inµ

1
can be absorbed by a transformationt → t ′. However,

it is not possible to find a single coordinate system, in which the metric has the
form (30) and is time-independent in both region A and B.

LECTURE V

EQUATIONS OF MOTION OF ROTATING BODIES 6

The first papers on the equations of motion dealt only with the problem of
spherically-symmetric, non-rotating bodies, described by “pole-particles” in the
method of singularities. If one wants to obtain the motion and the field due to
bodies with given internal structure, one must introduce higher poles, forbidden
by the original EIH prescriptions. The first and the simplest question which arises
concerns the motion of test particles with internal degrees of freedom (angular
momentum, quadrupole momentum etc.). This problem has been discussed by a
special approximate method by Mathisson [54] and Lubański [55], and in general
relativity by Papapetrou [56]. The approach presented here has the advantage of
being relativistically invariant (the derivation of Papapetrou is not) and applicable
to particles with arbitrarily high multipole structure. The motion of heavy rotating
bodies is discussed in Fock’s book [22] and in a paper by Haywood [57], who, how-
ever, neglected some terms of orderl/L in the equations of motion7. Haywood’s
equations differ only by non-essential terms from the EIH equations for pole-
particles. The post-Newtonian equations containing the corrections of orderl/L

due to rotation have been found by Tulczyjew [53]. Starting from these equations
it is possible to derive a new relativistic effect consisting of the precession of the
plane of revolution.

1. Representation of extended bodies by means of singularities. Let us first
take a scalar (Newtonian) potentialφ, satisfying the Poisson equation

1φ = −4πf, (1)

wheref denotes a regular function, vanishing outside a bounded region whose
dimensions are of orderl. The solution of (1) can be written as

φ(r ) =
∫
f (r ′)R−1dV ′. (2)

6 This lecture is based mainly on the work of W. Tulczyjew [36, 53]. I take responsibility for this
presentation of the results.

7 As before,l is a length characterizing the dimensions of the bodies andL the distance between
them.
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ExpandingR−1 = |r − r ′|−1 into a power series around the pointr ′ = 0 it is
possible to writeφ in the form

φ(r ) = µr−1 − µi(1/r),i + (1/2!)µik(1/r),ik − . . . , (3)

where the coefficientsµ, µi , . . . are given by

µ =
∫
f dV, µi =

∫
xif dV, µik =

∫
xixkf dV, . . . ,

µi1...in/µ being of the orderln. Neglecting the quadrupole field is equivalent to
treatingl2/r2 as small. Ifµ 6= 0 all the higher moments depend on the choice
of the origin of coordinates which may always be localized in the centre of mass.
The dipole or static momentµi vanishes in this case. Ifµ = 0 thenµi does not
depend on the choice of the origin but this case does not occur in the theory of
gravitation. The series (3) represents the field only outside the body and in general
is divergent for small values ofr.

In theδ-functions formalism, theφ given by (3) is a solution of

1φ = −4π
(
µδ − µiδ,i + 1

2µ
ikδ,ik − . . .

)
and we can writesymbolically

f = µδ − µiδ,i + 1
2µ

ikδ,ik − . . . (4)

(δ = δ(r ) denotes the three-dimensional Dirac function). Equation (4) means only
that theexteriorfield due tof is equal to a sum of harmonic fields associated with
µδ, −µiδ,i , etc. Equation (4) becomes meaningful when one integrates its both
sides withxixk . . . xn (equality of momenta).

Every exterior static Newtonian field can be thus described by a denumerable
set of coefficients (the “gravitational skeleton” of Mathisson).

It is not quite obvious that a gravitational skeleton exists for a given body
in general relativity. We shall assume that it does, or at least we shall confine the
discussion to bodies for which can be found an “equivalent” energy-momentum
tensor built fromδ-functions. This energy-momentum tensor will be assumed to
have the form

T αβ =
∑∫ ∞

−∞
ds
[
µαβδ(4) − (

µαβλ1δ(4)
)
;λ1

+ . . .

+(−1)k(k!)−1 (µαβλ1...λk δ(4)
)
;λ1...λk

]
, (5)

where the sum is extended over all bodies,δ(4) = δ(4)
(
xλ − yλ(s)

)
is the

4- dimensional Dirac’s function, and theµ’s are some tensor fields defined along
the world lines and depending ons.
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2. Equations of motion for test particles. The equations of motion of particles
with a given structure, for example pole-dipole particles, can be obtained from
T αβ ;β = 0 withT αβ given by (5). The following two lemmas proved by Tulczyjew
simplify the derivation of the equations of motions:

Lemma 1. For every fieldaα...λ(s) regular along the lineyλ = yλ(s)we have the
identity∫ ∞

−∞
ds
(
aα...λy′µδ(4)

)
;µ ≡

∫ ∞

−∞
dsδ(4)Da

α...λ/ds, y′λ = dyλ/ds.

Lemma 2. Every expression

Nα...β =
∫ ∞

−∞
ds
[
να...βδ(4) + (

να...β|λ1δ(4)
)
;λ1

+ . . .+ (
να...β|λ1...λk δ(4)

)
;λ1...λk

]
(6)

can be transformed into the “normal” form

Nα...β =
∫ ∞

−∞
ds
[
nα...βδ(4) + (

nα...β|λ1δ(4)
)
;λ1

+ . . .+ (
nα...β|λ1...λk δ(4)

)
;λ1...λk

]
,

where then′s are symmetric in theλ′s and orthogonal toy′µ:

nα...β|λ1...λp = nα...β|(λ1...λp) and

nα...β|λ1...λpy′
λ1

= 0.

The vanishing of all then’s is a necessary and sufficient condition for the vanishing
ofNα...β .

The proof of the first lemma is easy. The proof of the second lemma is based on the
first lemma and on the formula expressing the skew part of the second covariant
derivatives of a tensor. In order to prove thatNα...β = 0 implies the vanishing of
then’s we integrate the scalar densityKα...βNα...β = 0 (Kα...β = arbitrary) over
a 4-region and apply some kind of generalized Du Bois Raymond’s lemma. The
general procedure of obtaining the equations of motion is very simple; we take a
T αβ with a definite number of multipole terms (i.e., we fixk in the formula (5)) and
write downT αβ ;β . This expression is of the type given by (6); one transforms it
into the normal form and then requires the separate vanishing of all the coefficients
n. As an example one can take a pole-dipole particle described by

T αβ =
∫ ∞

−∞
ds
[
µαβδ(4) − (

µαβλδ(4)
)
;λ
]
. (7)

Without loss of generality it is possible to assume thatall theµ’s are orthogonal
to the velocity in theλ-indices. In this case it means that
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µαβλy′
λ = 0.

µαβλ can be written in the form

µαβλ = Sαβλ + 1
2S

αλy′β + 1
2S

βλy′α + Sλy′αy′β,

where theS are orthogonal toy′λ andSαβλ = Sβαλ. Similarly

µαβ = mαβ +mαy′β +mβy′α +my′αy′β

where

mαβ = mβα, mαβy′
β = 0, mαy′

α = 0.

Sα corresponds to the static (dipole) moment of the body and can be put equal to
zero by an appropriate choice of the world liney. We shall assume in further work
thatSλ = 0. By writing T αβ ;β = ∫

ds
[ (
µαβδ(4)

)
;β − (

µαβλδ(4)
)
;λβ
] = 0 and

applying the procedure outlined above one obtains the following set of equations

Sαβλ + Sαλβ + 1
2(S

βλ + Sλβ)y′α = 0 (8)

or Sβλ = −Sλβ and Sαβλ = 0,

2mα = y′
βDS

βα/ds, (9a)

mαβ = 0, (9b)

DSαβ/ds − y′βy′
λDS

αλ/ds + y′αy′
λDS

βλ/ds = 0, (9c)

D

ds

(
my′α + DSλα

ds
y′
λ

)
+ 1

2S
µλy′βRαβµλ = 0. (10)

These equations are essentially those obtained by Papapetrou [56]. The condition
Sαβy′

β = 0 imposed onSαβ by Pirani [43] is here satisfied ex definitione. It follows
from equations (8)–(9b) that a pole-dipole particle is completely characterized by
4 parameters: the massm (which is conserved by virtue of (9c), see [43]) and a
space-like angular momentum vector [43]

Hµ = 1
2η
µλαβy′

λSαβ, Hµy′
µ = 0,

whereηµλαβ is the alternating tensor. Equation (9c) governs the changes of angular
momentum and can be rewritten in the form

DSαβ/ds = (
Sβλy′α − Sαλy′β)y′′

λ .

Equation (10) describes the translatory motion of the particle and reduces to
the geodesic equation forSαβ = 0. From (9a) and (9b) one obtains the result
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enunciated without proof in one of the preceding lectures: for a simple pole particle
µαβ = my′αy′β .

The equations (8)–(10) can also be applied to heavy rotating bodies if one
uses the “good-deltas” technique.

3. Post-Newtonian equations of motion of two heavy, rotating bodies. Let us

consider the case of two bodies of finite mass
1
m,

2
m, with world lines described

by yk = yk(t) and zk = zk(t). These bodies are supposed to possess some
internal angular momentum and to have a pole-dipole structure (quadrupole effects
being neglected). The equations of motion of these bodies can be obtained by an
approximate method directly from (9c) and (10). The approximate equations can
also be derived from the beginning without reference to (8)–(10).

The energy-momentum tensor density of the system can be written in the
form

T αβ = 1
t αβδ − 1

t αβkδ,k + 2
t αβδ − 2

t αβkδ,k (11)

1
δ = δ(3)

(
xs − ys

)
,

2
δ = δ(3)

(
xs − zs

)
,

which is equivalent to (7). EvaluatingT αβ ;β = 0 we obtain the equations of
motion, which for the first body read

1
t α0

,0 + 1
t 00 ˜{ α

00

}
+ 2

1
t 0r
{̃ α

0r

}
+ 1
t rs
{̃ α
rs

}
+ 1
t 00r ˜{ α

00

}
,r

+2
1
t 0sr

{̃ α
0s

}
,r

+ 1
t str

{̃ α
st

}
,r

= 0, (12)

1
t α0r

,0 + 1
t α0ẏr − 1

t αr + 1
t 00r ˜{ α

00

}
+ 2

1
t 0sr

{̃ α
0s

}
+ 1
t str

{̃ α
st

}
= 0, (13)

1
t α0r ẏs + 1

t α0s ẏr − 1
t αsr − 1

t αrs = 0, ẏr = dyr/dt. (14)

The equations for the second body are similar. Assuming the vanishing of
1
t 00r

and
2
t 00r (cf. the preceding section), one obtains from (14) forα = 0:

1
S
rs def= 2

1
t 0rs = − 1

S
sr

and forα = t :
1
t str = 1

2

(
1
S
sr ẏt + 1

S
tr ẏs

)
.

The field equations can be solved by the EIH method. Denotingt00 = m the
equation forg

2
00 can be written as
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1g
2

00 = 8π

(
1
m
2

1
δ+ 2

m
2

1
δ

)
.

The solution of this equation was given in lecture II. As before, one can take
g
2
ik = δik g

2
00. The equations forg

3
0k andg

4
00 contain new terms, due to rotation

of the bodies (the angular momentumSrs is of the third order and does not enter
the second order equations). The “rotating contributions” tog

3
0k andg

4
00 have

respectively the form 2S× gradr−1 and 2v
(
S× gradr−1

)
whereS is the vector

associated with the skew tensorSrs andv is the velocity of the body.
It is now possible to expand (12)–(14) into power series and obtain equations

for m, S andy. Equation (12) forα = 0 gives in the third order the conservation
of m

2
and in the fifth order determinesm

4
. Equation (13) forα = 0 determinest

3

0r

andt
5

0r , and forα = s gives

1
t
4

sr = 1
m
2
ẏs ẏr and

1
S
3

sr
,0 = 0. (15)

Equation (12) forα = k gives in the fourth order the Newtonian equations of
motion. To the sixth order this equation givesthe post-Newtonian equation of
translatory motion[53]:

1
m ÿk − 1

m
2
m(r−1),k = 1

m
2
m
[(
ẏs ẏs + 3

2 ż
s żs − 4ẏs żs − 4

2
mr−1 − 5

1
mr−1

) (
r−1
)
,k

+ (4ẏs (żk − ẏk
)+ 3ẏk żs − 4żk żs

) (
r−1
)
,s

+ 1
2 ż
mżnr,kmn

]
+
[

2
m

1
S
rs (2żs − ẏs )+ 1

m
2
S
rs (żs − 2ẏs )

] (
r−1
)
,kr

+2
(

2
m

1
S
kr + 1

m
2
S
kr
)
(żs − ẏs )

(
r−1
)
,rs
. (16)

1
m and

2
m denote here thesecondorder masses; the subscript 3 underS has also

been omitted;r = |y − z| is the distance between the bodies andr,k = ∂r/∂yk.
The interpretation ofS

3

rs as the internal angular momentum is justified by the

formula

S
3

rs =
∫ [ (

xs − ys
)
T
3

0r − (
xr − yr

)
T
3

0s]dV .
This Newtonian angular momentum is conserved by virtue of (15) and it intro-
duces some relativistic corrections to the motion in the 6th order. Terms of order
l2/L2 (quadratic in theS) have been neglected in (16) as small compared with
l/L.
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In order to integrate the equations (16) it is convenient to put them in the
Lagrange form. A Lagrangian function for non-rotating bodies has been found
by Fichtenholz [24] and by Infeld [37] and the terms corresponding to correc-
tions due to rotation were obtained by Tulczyjew [53]. The symmetry properties
of the Lagrangian allow us to write some first integrals of the equations of
motion.

We now quote some results under the simplifying assumptions that the mass

of the second body is much larger than that of the first (M = 2
m � 1

m = m) and
that only the second body has an internal angular momentumS8. Introducing the
vector

J = m
(
1 + 1

2v
2 + 3M/r

)
(r × v)+ 2mr × (r × S)r−3, (17)

wherev = ṙ andr is the radius-vector pointing from the second body to the first,
one can derive the following equation

dJ
dt

= 2

r3
S× J. (18)

In the Newtonian approximationJ is simply the (orbital) angular momentum of
the first particle and it is conserved by virtue of (18). The absolute value ofJ is
conserved even in the next approximation, however the vectorJ itself precesses
around the constant vectorS. For an orbit which is circular in the Newtonian
approximation (r = R = const.) the angular velocity of precession is equal
to

2SR−3 = const.

If the Newtonian motion takes place in a plane perpendicular toS, thenJ = const
and the post-Newtonian motion is plane too. In this case the trajectory of the
particle is a “rotating ellipse” and the advance of periastron per one revolution is
given by

1ψ = 6πM

p

(
1 − 4

3

mS

MJ

)
, (19)

wherep is the semi-latus-rectum of the ellipse. ForS = 0 this formula reduces
to the usual expression for the advance of the perihelion.

8 Tulczyjew’s original work deals with the general case of two rotating, heavy bodies.
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For an artificial satellite moving near the Earth, the advance of the perigee
due to rotation of the Earth is equal to 53” per century [58]. The angular velocity
of precession for such a satellite is equal to 26” per century.
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